Gromov-Hausdorff Stability of Dynamical Systems and Applications to PDEs

This monograph presents new insights into the perturbation theory of dynamical systems based on the Gromov-Hausdorff distance. In the first part, the authors introduce the notion of Gromov-Hausdorff distance between compact metric spaces, along with the corresponding distance for continuous maps, fl...

Descripción completa

Detalles Bibliográficos
Autor Corporativo: SpringerLink (-)
Otros Autores: Lee, Jihoon, autor (autor), Morales, Carlos, autor
Formato: Libro electrónico
Idioma:Inglés
Publicado: Cham : Springer International Publishing 2022.
Edición:1st ed
Colección:Springer eBooks.
Frontiers in Mathematics,
Acceso en línea:Conectar con la versión electrónica
Ver en Universidad de Navarra:https://innopac.unav.es/record=b4715021x*spi
Descripción
Sumario:This monograph presents new insights into the perturbation theory of dynamical systems based on the Gromov-Hausdorff distance. In the first part, the authors introduce the notion of Gromov-Hausdorff distance between compact metric spaces, along with the corresponding distance for continuous maps, flows, and group actions on these spaces. They also focus on the stability of certain dynamical objects like shifts, global attractors, and inertial manifolds. Applications to dissipative PDEs, such as the reaction-diffusion and Chafee-Infante equations, are explored in the second part. This text will be of interest to graduates students and researchers working in the areas of topological dynamics and PDEs. .
Descripción Física:VIII, 166 páginas, 5 ilustraciones, 2 ilustraciones (color)
Formato:Forma de acceso: World Wide Web.