Gromov-Hausdorff Stability of Dynamical Systems and Applications to PDEs
This monograph presents new insights into the perturbation theory of dynamical systems based on the Gromov-Hausdorff distance. In the first part, the authors introduce the notion of Gromov-Hausdorff distance between compact metric spaces, along with the corresponding distance for continuous maps, fl...
Autor Corporativo: | |
---|---|
Otros Autores: | , |
Formato: | Libro electrónico |
Idioma: | Inglés |
Publicado: |
Cham :
Springer International Publishing
2022.
|
Edición: | 1st ed |
Colección: | Springer eBooks.
Frontiers in Mathematics, |
Acceso en línea: | Conectar con la versión electrónica |
Ver en Universidad de Navarra: | https://innopac.unav.es/record=b4715021x*spi |
Sumario: | This monograph presents new insights into the perturbation theory of dynamical systems based on the Gromov-Hausdorff distance. In the first part, the authors introduce the notion of Gromov-Hausdorff distance between compact metric spaces, along with the corresponding distance for continuous maps, flows, and group actions on these spaces. They also focus on the stability of certain dynamical objects like shifts, global attractors, and inertial manifolds. Applications to dissipative PDEs, such as the reaction-diffusion and Chafee-Infante equations, are explored in the second part. This text will be of interest to graduates students and researchers working in the areas of topological dynamics and PDEs. . |
---|---|
Descripción Física: | VIII, 166 páginas, 5 ilustraciones, 2 ilustraciones (color) |
Formato: | Forma de acceso: World Wide Web. |