The Christoffel-Darboux kernel for data analysis

The Christoffel-Darboux kernel, a central object in approximation theory, is shown to have many potential uses in modern data analysis, including applications in machine learning. This is the first book to offer a rapid introduction to the subject, illustrating the surprising effectiveness of a simp...

Descripción completa

Detalles Bibliográficos
Otros Autores: Lasserre, Jean-Bernard, 1953- autor (autor), Pauwels, Edouard, 1986- autor, Putinar, Mihai, 1955- autor
Formato: Libro electrónico
Idioma:Inglés
Publicado: Cambridge : Cambridge University Press 2022.
Colección:CUP ebooks.
Cambridge monographs on applied and computational mathematics ; 38.
Acceso en línea:Conectar con la versión electrónica
Ver en Universidad de Navarra:https://innopac.unav.es/record=b46299701*spi
Descripción
Sumario:The Christoffel-Darboux kernel, a central object in approximation theory, is shown to have many potential uses in modern data analysis, including applications in machine learning. This is the first book to offer a rapid introduction to the subject, illustrating the surprising effectiveness of a simple tool. Bridging the gap between classical mathematics and current evolving research, the authors present the topic in detail and follow a heuristic, example-based approach, assuming only a basic background in functional analysis, probability and some elementary notions of algebraic geometry. They cover new results in both pure and applied mathematics and introduce techniques that have a wide range of potential impacts on modern quantitative and qualitative science. Comprehensive notes provide historical background, discuss advanced concepts and give detailed bibliographical references. Researchers and graduate students in mathematics, statistics, engineering or economics will find new perspectives on traditional themes, along with challenging open problems.
Descripción Física:1 recurso electrónico (xv, 168 páginas)
Formato:Forma de acceso: World Wide Web.
ISBN:9781108937078