Learning Ontology Relations by Combining Corpus-Based Techniques and Reasoning on Data from Semantic Web Sources

The manual construction of formal domain conceptualizations (ontologies) is labor-intensive. Ontology learning, by contrast, provides (semi-)automatic ontology generation from input data such as domain text. This thesis proposes a novel approach for learning labels of non-taxonomic ontology relation...

Descripción completa

Detalles Bibliográficos
Autor principal: Gerhard Wohlgenannt (-)
Formato: Libro electrónico
Idioma:Inglés
Publicado: Peter Lang International Academic Publishing Group 2018.
Colección:Open Research Library ebooks.
Acceso en línea:Conectar con la versión electrónica
Ver en Universidad de Navarra:https://innopac.unav.es/record=b45864214*spi
Descripción
Sumario:The manual construction of formal domain conceptualizations (ontologies) is labor-intensive. Ontology learning, by contrast, provides (semi-)automatic ontology generation from input data such as domain text. This thesis proposes a novel approach for learning labels of non-taxonomic ontology relations. It combines corpus-based techniques with reasoning on Semantic Web data. Corpus-based methods apply vector space similarity of verbs co-occurring with labeled and unlabeled relations to calculate relation label suggestions from a set of candidates. A meta ontology in combination with Semantic Web sources such as DBpedia and OpenCyc allows reasoning to improve the suggested labels. An extensive formal evaluation demonstrates the superior accuracy of the presented hybrid approach.
Descripción Física:1 recurso electrónico
Formato:Forma de acceso: World Wide Web.
ISBN:9783631753842
9783631606513