Non-Local Cell Adhesion Models Symmetries and Bifurcations in 1-D
This monograph considers the mathematical modeling of cellular adhesion, a key interaction force in cell biology. While deeply grounded in the biological application of cell adhesion and tissue formation, this monograph focuses on the mathematical analysis of non-local adhesion models. The novel asp...
Autor Corporativo: | |
---|---|
Otros Autores: | , |
Formato: | Libro electrónico |
Idioma: | Inglés |
Publicado: |
Cham :
Springer International Publishing
2021.
|
Edición: | 1st ed |
Colección: | Springer eBooks.
CMS/CAIMS Books in Mathematics, 1. |
Acceso en línea: | Conectar con la versión electrónica |
Ver en Universidad de Navarra: | https://innopac.unav.es/record=b45597480*spi |
Sumario: | This monograph considers the mathematical modeling of cellular adhesion, a key interaction force in cell biology. While deeply grounded in the biological application of cell adhesion and tissue formation, this monograph focuses on the mathematical analysis of non-local adhesion models. The novel aspect is the non-local term (an integral operator), which accounts for forces generated by long ranged cell interactions. The analysis of non-local models has started only recently, and it has become a vibrant area of applied mathematics. This monograph contributes a systematic analysis of steady states and their bifurcation structure, combining global bifurcation results pioneered by Rabinowitz, equivariant bifurcation theory, and the symmetries of the non-local term. These methods allow readers to analyze and understand cell adhesion on a deep level. |
---|---|
Descripción Física: | VIII, 152 páginas : 35 ilustraciones, 15 ilustraciones (color) |
Formato: | Forma de acceso: World Wide Web. |
ISBN: | 9783030671112 |