Non-Local Cell Adhesion Models Symmetries and Bifurcations in 1-D

This monograph considers the mathematical modeling of cellular adhesion, a key interaction force in cell biology. While deeply grounded in the biological application of cell adhesion and tissue formation, this monograph focuses on the mathematical analysis of non-local adhesion models. The novel asp...

Descripción completa

Detalles Bibliográficos
Autor Corporativo: SpringerLink (-)
Otros Autores: Buttenschön, Andreas, autor (autor), Hillen, Thomas, autor
Formato: Libro electrónico
Idioma:Inglés
Publicado: Cham : Springer International Publishing 2021.
Edición:1st ed
Colección:Springer eBooks.
CMS/CAIMS Books in Mathematics, 1.
Acceso en línea:Conectar con la versión electrónica
Ver en Universidad de Navarra:https://innopac.unav.es/record=b45597480*spi
Descripción
Sumario:This monograph considers the mathematical modeling of cellular adhesion, a key interaction force in cell biology. While deeply grounded in the biological application of cell adhesion and tissue formation, this monograph focuses on the mathematical analysis of non-local adhesion models. The novel aspect is the non-local term (an integral operator), which accounts for forces generated by long ranged cell interactions. The analysis of non-local models has started only recently, and it has become a vibrant area of applied mathematics. This monograph contributes a systematic analysis of steady states and their bifurcation structure, combining global bifurcation results pioneered by Rabinowitz, equivariant bifurcation theory, and the symmetries of the non-local term. These methods allow readers to analyze and understand cell adhesion on a deep level.
Descripción Física:VIII, 152 páginas : 35 ilustraciones, 15 ilustraciones (color)
Formato:Forma de acceso: World Wide Web.
ISBN:9783030671112