Proofs and computations

Driven by the question, 'What is the computational content of a (formal) proof?', this book studies fundamental interactions between proof theory and computability. It provides a unique self-contained text for advanced students and researchers in mathematical logic and computer science. Pa...

Descripción completa

Detalles Bibliográficos
Otros Autores: Schwichtenberg, Helmut, 1942- autor (autor), Wainer, S. S., autor
Formato: Libro electrónico
Idioma:Inglés
Publicado: Cambridge : Cambridge University Press 2012.
Colección:CUP ebooks.
Perspectives in logic.
Acceso en línea:Conectar con la versión electrónica
Ver en Universidad de Navarra:https://innopac.unav.es/record=b45433926*spi
Descripción
Sumario:Driven by the question, 'What is the computational content of a (formal) proof?', this book studies fundamental interactions between proof theory and computability. It provides a unique self-contained text for advanced students and researchers in mathematical logic and computer science. Part I covers basic proof theory, computability and Gödel's theorems. Part II studies and classifies provable recursion in classical systems, from fragments of Peano arithmetic up to S11-CA0. Ordinal analysis and the (Schwichtenberg-Wainer) subrecursive hierarchies play a central role and are used in proving the 'modified finite Ramsey' and 'extended Kruskal' independence results for PA and S11-CA0. Part III develops the theoretical underpinnings of the first author's proof assistant MINLOG. Three chapters cover higher-type computability via information systems, a constructive theory TCF of computable functionals, realizability, Dialectica interpretation, computationally significant quantifiers and connectives and polytime complexity in a two-sorted, higher-type arithmetic with linear logic.
Descripción Física:1 recurso electrónico (xiii, 465 páginas)
Formato:Forma de acceso: World Wide Web.
ISBN:9781139031905