R deep learning essentials a step-by-step guide to building deep learning models using TensorFlow, Keras, and MXNet

This book demonstrates how to use deep Learning in R for machine learning, image classification, and natural language processing. It covers topics such as convolutional networks, recurrent neural networks, transfer learning and deep learning in the cloud. By the end of this book, you will be able to...

Descripción completa

Detalles Bibliográficos
Otros Autores: Hodnett, Mark, autor (autor), Wiley, Joshua F., autor
Formato: Libro electrónico
Idioma:Inglés
Publicado: Birmingham : Packt Publishing Ltd 2018.
Edición:Second edition
Colección:EBSCO Academic eBook Collection Complete.
Acceso en línea:Conectar con la versión electrónica
Ver en Universidad de Navarra:https://innopac.unav.es/record=b45004675*spi
Descripción
Sumario:This book demonstrates how to use deep Learning in R for machine learning, image classification, and natural language processing. It covers topics such as convolutional networks, recurrent neural networks, transfer learning and deep learning in the cloud. By the end of this book, you will be able to apply deep learning to real-world projects.
Notas:Incluye índice.
Document classification.
Descripción Física:1 recurso electrónico
Formato:Forma de acceso: World Wide Web.
ISBN:9781788997805