Sobolev spaces on metric measure spaces an approach based on upper gradients

Analysis on metric spaces emerged in the 1990s as an independent research field providing a unified treatment of first-order analysis in diverse and potentially nonsmooth settings. Based on the fundamental concept of upper gradient, the notion of a Sobolev function was formulated in the setting of m...

Descripción completa

Detalles Bibliográficos
Autor principal: Heinonen, Juha (-)
Otros Autores: Koskela, Pekka, Shanmugalingam, Nageswari, Tyson, Jeremy T., 1972-
Formato: Libro electrónico
Idioma:Inglés
Publicado: Cambridge : Cambridge University Press 2015.
Colección:EBSCO Academic eBook Collection Complete.
New mathematical monographs ; 27.
Acceso en línea:Conectar con la versión electrónica
Ver en Universidad de Navarra:https://innopac.unav.es/record=b4252667x*spi
Descripción
Sumario:Analysis on metric spaces emerged in the 1990s as an independent research field providing a unified treatment of first-order analysis in diverse and potentially nonsmooth settings. Based on the fundamental concept of upper gradient, the notion of a Sobolev function was formulated in the setting of metric measure spaces supporting a Poincaré inequality. This coherent treatment from first principles is an ideal introduction to the subject for graduate students and a useful reference for experts. It presents the foundations of the theory of such first-order Sobolev spaces, then explores geometric implications of the critical Poincaré inequality, and indicates numerous examples of spaces satisfying this axiom. A distinguishing feature of the book is its focus on vector-valued Sobolev spaces. The final chapters include proofs of several landmark theorems, including Cheeger's stability theorem for Poincaré inequalities under Gromov-Hausdorff convergence, and the Keith-Zhong self-improvement theorem for Poincaré inequalities.
Descripción Física:xii, 434 p.
Formato:Forma de acceso: World Wide Web.
Bibliografía:Incluye referencias bibliográficas e índice.
ISBN:9781316248607
9781316250495
9781316135914