Electron Transport Chains

The final stage of cellular respiration is oxidative phosphorylation, which consists of (1) an electron transport chain and (2) chemiosmosis. The electron transport chain is a set of proteins and other organic molecules found in the inner membrane of mitochondria in eukaryotic cells and the plasma m...

Descripción completa

Detalles Bibliográficos
Autor principal: Corporation, myJoVE.
Autor Corporativo: Corporation, myJoVE (-)
Formato: Video
Idioma:Inglés
Publicado: Cambridge, MA : MyJoVE Corp 2016.
Colección:JOVE Science Education.
Core Bio.
Acceso en línea:Acceso a vídeo desde UNAV
Ver en Universidad de Navarra:https://innopac.unav.es/record=b42118815*spi
Descripción
Sumario:The final stage of cellular respiration is oxidative phosphorylation, which consists of (1) an electron transport chain and (2) chemiosmosis. The electron transport chain is a set of proteins and other organic molecules found in the inner membrane of mitochondria in eukaryotic cells and the plasma membrane of prokaryotic cells. The electron transport chain has two primary functions: it produces a proton gradient—storing energy that can be used to create ATP during chemiosmosis—and generates electron carriers, such as NAD+ and FAD, that are used in glycolysis and the citric acid cycle. Generally, molecules of the electron transport chain are organized into four complexes (I-IV). The molecules pass electrons to one another through multiple redox reactions, moving electrons from higher to lower energy levels through the transport chain. These reactions release energy that the complexes use to pump H+ across the inner membrane (from the matrix into the intermembrane space). This forms a proton gradient across the inner membrane. NADH and FADH2 are reduced electron carriers produced during earlier cellular respiration phases. NADH can directly input electrons into complex I, which uses the released energy to pump protons into the intermembrane space. FADH2 inputs electrons into complex II, the only complex that does not pump protons into the intermembrane space. Thus, FADH2 contributes less to the proton gradient than NADH. NADH and FADH2 are converted back into electron carriers NAD+ and FAD, respectively. Both NADH and FADH2 transfer electrons to ubiquinone, a mobile electron carrier that passes the electrons to complex III. From there, the electrons are transferred to the mobile electron carrier cytochrome c (cyt c). Cyt c delivers the electrons to complex IV, which passes them to O2. Oxygen breaks apart, forming two oxygen atoms that each accept two protons to form water.
Notas:Tít. sacado de la página de descripción del recurso.
Descripción Física:1 recurso electrónico (214 seg.) : son., col
Formato:Forma de acceso: World Wide Web.
Público:Para estudiantes universitarios, graduados y profesionales.