Measuring Grey Matter Differences with Voxel-based Morphometry: The Musical Brain
Experience shapes the brain. It is well understood that our brains are different as a result of learning. While many experience-related changes manifest themselves at the microscopic level, for example by neurochemical adjustments in the behavior of individual neurons, we may also examine anatomical...
Autor principal: | |
---|---|
Formato: | |
Idioma: | Inglés |
Publicado: |
Cambridge, MA :
MyJoVE Corp
2016.
|
Colección: | JOVE Science Education.
Neuropsychology. |
Acceso en línea: | Acceso a vídeo desde UNAV |
Ver en Universidad de Navarra: | https://innopac.unav.es/record=b42114871*spi |
Sumario: | Experience shapes the brain. It is well understood that our brains are different as a result of learning. While many experience-related changes manifest themselves at the microscopic level, for example by neurochemical adjustments in the behavior of individual neurons, we may also examine anatomical changes to the structure of the brain at a macroscopic level. One famous example of this kind of change comes from the case of the London taxi drivers, who along with learning the complex routes of the city show larger volume in the hippocampus, a brain structure known to play a role in navigational memory.1 Many traditional methods of examining brain anatomy require painstaking tracing of anatomical regions of interest in order to measure their size. However, using modern neuroimaging techniques, we can now compare the anatomy of the brains across groups of people using automated algorithms. While these techniques do not avail themselves of the sophisticated knowledge that human neuroanatomists may bring to the task, they are quick, and sensitive to very small differences in anatomy. In a structural magnetic resonance image of the brain, the intensity of each volumetric pixel, or voxel, relates to the density of the gray matter in that region. For example, in a T1-weighted MRI scan, very bright voxels are found in locations where there are white matter fiber bundles, while darker voxels correspond to grey matter, where the cell bodies of neurons reside. The technique of quantifying and comparing brain structure on a voxel-by-voxel basis is called voxel-based morphometry, or VBM.2 In VBM, we first register all of the brains to a common space, smoothing over any gross differences in anatomy. We then compare the intensity values of the voxels to identify localized, small scale differences in gray matter density. In this experiment, we will demonstrate the VBM technique by comparing the brains of musicians with those of non-musicians. Musicians engage in intense motoric, visual, and acoustic training. There is evidence from multiple sources that that the brains of people who have gone through musical training are functionally and structural different from those who haven't. Here, we follow Gaser and Shlaug3 and Bermudez et al.4 in using VBM to identify these structural differences in the brains of musicians. |
---|---|
Notas: | Tít. sacado de la página de descripción del recurso. |
Descripción Física: | 1 recurso electrónico (556 seg.) : son., col |
Formato: | Forma de acceso: World Wide Web. |
Público: | Para estudiantes universitarios, graduados y profesionales. |