The Split Brain

The study of how damage to the brain affects cognitive functioning has historically been one of the most important tools for cognitive neuroscience. While the brain is one of the most well protected parts of the body, there are many events that can affect the functioning of the brain. Vascular issue...

Descripción completa

Detalles Bibliográficos
Autor principal: Kaplan, Jonas (-)
Formato: Video
Idioma:Inglés
Publicado: Cambridge, MA : MyJoVE Corp 2016.
Colección:JOVE Science Education.
Neuropsychology.
Acceso en línea:Acceso a vídeo desde UNAV
Ver en Universidad de Navarra:https://innopac.unav.es/record=b42114755*spi
Descripción
Sumario:The study of how damage to the brain affects cognitive functioning has historically been one of the most important tools for cognitive neuroscience. While the brain is one of the most well protected parts of the body, there are many events that can affect the functioning of the brain. Vascular issues, tumors, degenerative diseases, infections, blunt force traumas, and neurosurgery are just some of the underlying causes of brain damage, all of which may produce different patterns of tissue damage that affect brain functioning in different ways. The history of neuropsychology is marked by several well-known cases that led to advances in the understanding of the brain. For instance, in 1861 Paul Broca observed how damage to the left frontal lobe resulted in aphasia, an acquired language disorder. As another example, a great deal about memory has been learned from patients with amnesia, such as the famous case of Henry Molaison, known for many years in the neuropsychology literature as "H.M.," whose temporal lobe surgery led to a profound deficit in forming certain kinds of new memories. While the observation and testing of patients with focal brain damage has provided neuroscience with insight into the functioning of the brain, great care must be taken in designing tests to reveal the specific nature of the deficit. Also, because the brain is a complex network of interconnected neurons, damage to one brain region can affect functioning in regions far away from the damage. To demonstrate how brain damage can affect connections among brain regions, this video examines the case of the so-called split brain. The corpus callosum is a large bundle of fibers that connects the left and right hemispheres of the brain. It is one of the largest white matter tracts in the brain and can be easily recognized on a sagittal view of the midline of the brain. In the 1960s, neurosurgeons discovered that cutting the corpus callosum could be a successful treatment for certain kinds of epilepsy, which involves uncontrollable neural activity spreading through the brain. People who underwent the split-brain operation had their two hemispheres surgically separated, such that the left and right hemispheres were no longer able to communicate. This condition allowed experimenters to probe the functions of the left and right hemisphere independently, to learn about the relative abilities, and about the nature of communication between them. This video demonstrates how to test a split-brain patient to reveal some of the differences between the two hemispheres of the brain and to see some dramatic consequences of such a disconnection. The original versions of these experiments were developed by Michael Gazzaniga and colleagues1, 2 and later were elaborated upon by others;3 the version presented here incorporates more recent modernizations of the methodology.
Notas:Tít. sacado de la página de descripción del recurso.
Descripción Física:1 recurso electrónico (636 seg.) : son., col
Formato:Forma de acceso: World Wide Web.
Público:Para estudiantes universitarios, graduados y profesionales.