Automatic detection of irony opinion mining in microblogs and social media

In recent years, there has been a proliferation of opinion-heavy texts on the Web: opinions of Internet users, comments on social networks, etc. Automating the synthesis of opinions has become crucial to gaining an overview on a given topic. Current automatic systems perform well on classifying the...

Descripción completa

Detalles Bibliográficos
Otros Autores: Karoui, Jihen, autor (autor), Benamara, Farah, autor, Moriceau, Véronique, autor
Formato: Libro electrónico
Idioma:Inglés
Publicado: London, UK : Hoboken, NJ : ISTE, Ltd. ; Wiley 2019.
Colección:Wiley ebooks.
Acceso en línea:Conectar con la versión electrónica
Ver en Universidad de Navarra:https://innopac.unav.es/record=b40642781*spi
Descripción
Sumario:In recent years, there has been a proliferation of opinion-heavy texts on the Web: opinions of Internet users, comments on social networks, etc. Automating the synthesis of opinions has become crucial to gaining an overview on a given topic. Current automatic systems perform well on classifying the subjective or objective character of a document. However, classifications obtained from polarity analysis remain inconclusive, due to the algorithms' inability to understand the subtleties of human language. Automatic Detection of Irony presents, in three stages, a supervised learning approach to predicting whether a tweet is ironic or not. The book begins by analyzing some everyday examples of irony and presenting a reference corpus. It then develops an automatic irony detection model for French tweets that exploits semantic traits and extralinguistic context. Finally, it presents a study of portability in a multilingual framework (Italian, English, Arabic).
Descripción Física:1 recurso electrónico
Formato:Forma de acceso: World Wide Web.
Bibliografía:Incluye referencias bibliográficas e índice.
ISBN:9781119671183
9781119671220
9781119671152