Evolutionary algorithms

Evolutionary algorithms are bio-inspired algorithms based on Darwin's theory of evolution. They are expected to provide non-optimal but good quality solutions to problems whose resolution is impracticable by exact methods. In six chapters, this book presents the essential knowledge required to...

Descripción completa

Detalles Bibliográficos
Otros Autores: Pétrowski, Alain, autor (autor), Ben-Hamida, Sana, autor
Formato: Libro electrónico
Idioma:Inglés
Publicado: London : ISTE 2017.
Colección:Wiley ebooks.
Metaheuristics set ; 9.
Acceso en línea:Conectar con la versión electrónica
Ver en Universidad de Navarra:https://innopac.unav.es/record=b4062268x*spi
Descripción
Sumario:Evolutionary algorithms are bio-inspired algorithms based on Darwin's theory of evolution. They are expected to provide non-optimal but good quality solutions to problems whose resolution is impracticable by exact methods. In six chapters, this book presents the essential knowledge required to efficiently implement evolutionary algorithms. Chapter 1 describes a generic evolutionary algorithm as well as the basic operators that compose it. Chapter 2 is devoted to the solving of continuous optimization problems, without constraint. Three leading approaches are described and compared on a set of test functions. Chapter 3 considers continuous optimization problems with constraints. Various approaches suitable for evolutionary methods are presented. Chapter 4 is related to combinatorial optimization. It provides a catalog of variation operators to deal with order-based problems. Chapter 5 introduces the basic notions required to understand the issue of multi-objective optimization and a variety of approaches for its application. Finally, Chapter 6 describes different approaches of genetic programming able to evolve computer programs in the context of machine learning.
Descripción Física:1 recurso electrónico
Formato:Forma de acceso: World Wide Web.
Bibliografía:Incluye referencias bibliográficas e índice.
ISBN:9781119136415
9781119136378