Nature-inspired optimization algorithms

Nature-Inspired Optimization Algorithms provides a systematic introduction to all major nature-inspired algorithms for optimization. The book's unified approach, balancing algorithm introduction, theoretical background and practical implementation, complements extensive literature with well-cho...

Descripción completa

Detalles Bibliográficos
Autor principal: Yang, Xin-She (-)
Formato: Libro electrónico
Idioma:Inglés
Publicado: London [England] ; Waltham [Massachusetts] : Elsevier 2014.
Edición:1st ed
Colección:EBSCO Academic eBook Collection Complete.
Elsevier insights.
Acceso en línea:Conectar con la versión electrónica
Ver en Universidad de Navarra:https://innopac.unav.es/record=b3993987x*spi
Descripción
Sumario:Nature-Inspired Optimization Algorithms provides a systematic introduction to all major nature-inspired algorithms for optimization. The book's unified approach, balancing algorithm introduction, theoretical background and practical implementation, complements extensive literature with well-chosen case studies to illustrate how these algorithms work. Topics include particle swarm optimization, ant and bee algorithms, simulated annealing, cuckoo search, firefly algorithm, bat algorithm, flower algorithm, harmony search, algorithm analysis, constraint handling, hybrid methods, parameter tuning and control, as well as multi-objective optimization. This book can serve as an introductory book for graduates, doctoral students and lecturers in computer science, engineering and natural sciences. It can also serve a source of inspiration for new applications. Researchers and engineers as well as experienced experts will also find it a handy reference. Discusses and summarizes the latest developments in nature-inspired algorithms with comprehensive, timely literatureProvides a theoretical understanding as well as practical implementation hintsProvides a step-by-step introduction to each algorithm.
Descripción Física:276 p. : il
Formato:Forma de acceso: World Wide Web.
Bibliografía:Incluye referencias bibliográficas.
ISBN:9780124167452
9780124167438