Convex and Stochastic Optimization

This textbook provides an introduction to convex duality for optimization problems in Banach spaces, integration theory, and their application to stochastic programming problems in a static or dynamic setting. It introduces and analyses the main algorithms for stochastic programs, while the theoreti...

Descripción completa

Detalles Bibliográficos
Autor principal: Bonnans, J. Frédéric (-)
Autor Corporativo: SpringerLink (-)
Formato: Libro electrónico
Idioma:Inglés
Publicado: Cham : Springer International Publishing 2019.
Edición:1st ed
Colección:Springer eBooks.
Universitext ;
Acceso en línea:Conectar con la versión electrónica
Ver en Universidad de Navarra:https://innopac.unav.es/record=b3990653x*spi
Descripción
Sumario:This textbook provides an introduction to convex duality for optimization problems in Banach spaces, integration theory, and their application to stochastic programming problems in a static or dynamic setting. It introduces and analyses the main algorithms for stochastic programs, while the theoretical aspects are carefully dealt with. The reader is shown how these tools can be applied to various fields, including approximation theory, semidefinite and second-order cone programming and linear decision rules. This textbook is recommended for students, engineers and researchers who are willing to take a rigorous approach to the mathematics involved in the application of duality theory to optimization with uncertainty.
Descripción Física:XIII, 311 p.
Formato:Forma de acceso: World Wide Web.
ISBN:9783030149772