The Covering property Axiom, CPA a combinatorial core of the iterated perfect set model
Here the authors formulate and explore a new axiom of set theory, CPA, the Covering Property Axiom. CPA is consistent with the usual ZFC axioms, indeed it is true in the iterated Sacks model and actually captures the combinatorial core of this model. A plethora of results known to be true in the Sac...
Autor principal: | |
---|---|
Otros Autores: | |
Formato: | Libro electrónico |
Idioma: | Inglés |
Publicado: |
Cambridge, UK ; New York :
Cambridge University Press
2004.
|
Colección: | EBSCO Academic eBook Collection Complete.
Cambridge tracts in mathematics ; 164. |
Acceso en línea: | Conectar con la versión electrónica |
Ver en Universidad de Navarra: | https://innopac.unav.es/record=b38389204*spi |
Sumario: | Here the authors formulate and explore a new axiom of set theory, CPA, the Covering Property Axiom. CPA is consistent with the usual ZFC axioms, indeed it is true in the iterated Sacks model and actually captures the combinatorial core of this model. A plethora of results known to be true in the Sacks model easily follow from CPA. Replacing iterated forcing arguments with deductions from CPA simplifies proofs, provides deeper insight, and leads to new results. One may say that CPA is similar in nature to Martin's axiom, as both capture the essence of the models of ZFC in which they hold. The exposition is self contained and there are natural applications to real analysis and topology. Researchers who use set theory in their work will find much of interest in this book. |
---|---|
Descripción Física: | xxi, 174 p. |
Formato: | Forma de acceso: World Wide Web. |
Bibliografía: | Incluye referencias bibliográficas (p. 165-171) e índice. |
ISBN: | 9780511212031 9780521839204 9780511217401 9780511215612 9780511546457 |