Structurally Unstable Quadratic Vector Fields of Codimension One

Originating from research in the qualitative theory of ordinary differential equations, this book follows the authors' work on structurally stable planar quadratic polynomial differential systems. In the present work the authors aim at finding all possible phase portraits in the Poincaré disc,...

Descripción completa

Detalles Bibliográficos
Autor Corporativo: SpringerLink (-)
Otros Autores: Artés, Joan C. autor (autor), Llibre, Jaume, autor, Rezende, Alex C, autor
Formato: Libro electrónico
Idioma:Inglés
Publicado: Cham : Springer International Publishing : Imprint: Birkhäuser 2018.
Colección:Springer eBooks.
Acceso en línea:Conectar con la versión electrónica
Ver en Universidad de Navarra:https://innopac.unav.es/record=b38049028*spi
Descripción
Sumario:Originating from research in the qualitative theory of ordinary differential equations, this book follows the authors' work on structurally stable planar quadratic polynomial differential systems. In the present work the authors aim at finding all possible phase portraits in the Poincaré disc, modulo limit cycles, of planar quadratic polynomial differential systems manifesting the simplest level of structural instability. They prove that there are at most 211 and at least 204 of them. .
Descripción Física:VI, 267 p. 362 il., 1 il. col
Formato:Forma de acceso: World Wide Web.
ISBN:9783319921174