Convolution Copula Econometrics

This book presents a novel approach to time series econometrics, which studies the behavior of nonlinear stochastic processes. This approach allows for an arbitrary dependence structure in the increments and provides a generalization with respect to the standard linear independent increments assumpt...

Descripción completa

Detalles Bibliográficos
Autor principal: Cherubini, Umberto (-)
Autor Corporativo: SpringerLink (-)
Otros Autores: Gobbi, Fabio, Mulinacci, Sabrina
Formato: Libro electrónico
Idioma:Inglés
Publicado: Cham : Springer International Publishing 2016.
Colección:SpringerBriefs in Statistics.
Springer eBooks.
Acceso en línea:Conectar con la versión electrónica
Ver en Universidad de Navarra:https://innopac.unav.es/record=b3487799x*spi
Descripción
Sumario:This book presents a novel approach to time series econometrics, which studies the behavior of nonlinear stochastic processes. This approach allows for an arbitrary dependence structure in the increments and provides a generalization with respect to the standard linear independent increments assumption of classical time series models. The book offers a solution to the problem of a general semiparametric approach, which is given by a concept called C-convolution (convolution of dependent variables), and the corresponding theory of convolution-based copulas. Intended for econometrics and statistics scholars with a special interest in time series analysis and copula functions (or other nonparametric approaches), the book is also useful for doctoral students with a basic knowledge of copula functions wanting to learn about the latest research developments in the field.
Descripción Física:X, 90 p. 31 il., 30 il. col
Formato:Forma de acceso: World Wide Web.
ISBN:9783319480152