Convolution Copula Econometrics
This book presents a novel approach to time series econometrics, which studies the behavior of nonlinear stochastic processes. This approach allows for an arbitrary dependence structure in the increments and provides a generalization with respect to the standard linear independent increments assumpt...
Autor principal: | |
---|---|
Autor Corporativo: | |
Otros Autores: | , |
Formato: | Libro electrónico |
Idioma: | Inglés |
Publicado: |
Cham :
Springer International Publishing
2016.
|
Colección: | SpringerBriefs in Statistics.
Springer eBooks. |
Acceso en línea: | Conectar con la versión electrónica |
Ver en Universidad de Navarra: | https://innopac.unav.es/record=b3487799x*spi |
Sumario: | This book presents a novel approach to time series econometrics, which studies the behavior of nonlinear stochastic processes. This approach allows for an arbitrary dependence structure in the increments and provides a generalization with respect to the standard linear independent increments assumption of classical time series models. The book offers a solution to the problem of a general semiparametric approach, which is given by a concept called C-convolution (convolution of dependent variables), and the corresponding theory of convolution-based copulas. Intended for econometrics and statistics scholars with a special interest in time series analysis and copula functions (or other nonparametric approaches), the book is also useful for doctoral students with a basic knowledge of copula functions wanting to learn about the latest research developments in the field. |
---|---|
Descripción Física: | X, 90 p. 31 il., 30 il. col |
Formato: | Forma de acceso: World Wide Web. |
ISBN: | 9783319480152 |