Machine Learning for Evolution Strategies

This book introduces numerous algorithmic hybridizations between both worlds that show how machine learning can improve and support evolution strategies. The set of methods comprises covariance matrix estimation, meta-modeling of fitness and constraint functions, dimensionality reduction for search...

Descripción completa

Detalles Bibliográficos
Autor principal: Kramer, Oliver (-)
Autor Corporativo: SpringerLink (-)
Formato: Libro electrónico
Idioma:Inglés
Publicado: Cham : Springer International Publishing 2016.
Colección:Studies in Big Data ; 20.
Springer eBooks.
Acceso en línea:Conectar con la versión electrónica
Ver en Universidad de Navarra:https://innopac.unav.es/record=b33470844*spi
Descripción
Sumario:This book introduces numerous algorithmic hybridizations between both worlds that show how machine learning can improve and support evolution strategies. The set of methods comprises covariance matrix estimation, meta-modeling of fitness and constraint functions, dimensionality reduction for search and visualization of high-dimensional optimization processes, and clustering-based niching. After giving an introduction to evolution strategies and machine learning, the book builds the bridge between both worlds with an algorithmic and experimental perspective. Experiments mostly employ a (1+1)-ES and are implemented in Python using the machine learning library scikit-learn. The examples are conducted on typical benchmark problems illustrating algorithmic concepts and their experimental behavior. The book closes with a discussion of related lines of research.
Descripción Física:IX, 124 p., 38 il. col
Formato:Forma de acceso: World Wide Web.
ISBN:9783319333830