Towards Adaptive Spoken Dialog Systems

In Monitoring Adaptive Spoken Dialog Systems, authors Alexander Schmitt and Wolfgang Minker investigate statistical approaches that allow for recognition of negative dialog patterns in Spoken Dialog Systems (SDS). The presented stochastic methods allow a flexible, portable and  accurate use.  Beginn...

Descripción completa

Detalles Bibliográficos
Autor principal: Schmitt, Alexander (-)
Autor Corporativo: SpringerLink (-)
Otros Autores: Minker, Wolfgang
Formato: Libro electrónico
Idioma:Inglés
Publicado: New York, NY : Springer New York 2013.
Colección:Springer eBooks.
Acceso en línea:Conectar con la versión electrónica
Ver en Universidad de Navarra:https://innopac.unav.es/record=b33020383*spi
Descripción
Sumario:In Monitoring Adaptive Spoken Dialog Systems, authors Alexander Schmitt and Wolfgang Minker investigate statistical approaches that allow for recognition of negative dialog patterns in Spoken Dialog Systems (SDS). The presented stochastic methods allow a flexible, portable and  accurate use.  Beginning with the foundations of machine learning and pattern recognition, this monograph examines how frequently users show negative emotions in spoken dialog systems and develop novel approaches to speech-based emotion recognition using hybrid approach to model emotions. The authors make use of statistical methods based on acoustic, linguistic and contextual features to examine the relationship between the interaction flow and the occurrence of emotions using non-acted  recordings several thousand real users from commercial and non-commercial SDS. Additionally, the authors present novel statistical methods that spot problems within a dialog based on interaction patterns. The approaches enable future SDS to offer more natural and robust interactions. This work provides insights, lessons and  inspiration for future research and development, not only for spoken dialog systems, but for data-driven approaches to human-machine interaction in general.
Descripción Física:XIV, 254 p.
Formato:Forma de acceso: World Wide Web.
ISBN:9781461445937