An Introduction to Riemann Surfaces

This textbook presents a unified approach to compact and noncompact Riemann surfaces from the point of view of the L² -method, a powerful technique used in the theory of several complex variables.  The work features a simple construction of a strictly subharmonic exhaustion function and a related co...

Descripción completa

Detalles Bibliográficos
Autor principal: Napier, Terrence (-)
Autor Corporativo: SpringerLink (-)
Otros Autores: Ramachandran, Mohan
Formato: Libro electrónico
Idioma:Inglés
Publicado: Boston, MA : Birkhäuser Boston 2012.
Colección:Cornerstones.
Springer eBooks.
Acceso en línea:Conectar con la versión electrónica
Ver en Universidad de Navarra:https://innopac.unav.es/record=b32905737*spi
Descripción
Sumario:This textbook presents a unified approach to compact and noncompact Riemann surfaces from the point of view of the L² -method, a powerful technique used in the theory of several complex variables.  The work features a simple construction of a strictly subharmonic exhaustion function and a related construction of a positive-curvature Hermitian metric in a holomorphic line bundle, topics which serve as starting points for proofs of standard results such as the Mittag-Leffler, Weierstrass, and Runge theorems; the Riemann−Roch theorem; the Serre duality and Hodge decomposition theorems; and the uniformization theorem. The book also contains treatments of other facts concerning the holomorphic, smooth, and topological structure of a Riemann surface, such as the biholomorphic classification of Riemann surfaces, the embedding theorems, the integrability of almost complex structures, the Schönflies theorem (and the Jordan curve theorem), and the existence of smooth structures on second countable surfaces.  Although some previous experience with complex analysis, Hilbert space theory, and analysis on manifolds would be helpful, the only prerequisite for this book is a working knowledge of point-set topology and elementary measure theory. The work includes numerous exercises—many of which lead to further development of the theory—and  presents (with proofs) streamlined treatments of background topics from analysis and topology on manifolds in easily-accessible reference chapters, making it ideal for a one- or two-semester graduate course.
Descripción Física:XVII, 560 p., 42 il
Formato:Forma de acceso: World Wide Web.
ISBN:9780817646936