Lyapunov matrix equation in system stability and control

The Lyapunov and Riccati equations are two of the fundamental equations of control and system theory, having special relevance for system identification, optimization, boundary value problems, power systems, signal processing, and communications. The Lyapunov Matrix Equation in System Stability and...

Descripción completa

Detalles Bibliográficos
Autor principal: Gajić, Zoran (-)
Otros Autores: Qureshi, Muhammad Tahir Javed
Formato: Libro electrónico
Idioma:Inglés
Publicado: San Diego : Academic Press 1995.
Colección:EBSCO Academic eBook Collection Complete.
Mathematics in science and engineering ; v. 195.
Acceso en línea:Conectar con la versión electrónica
Ver en Universidad de Navarra:https://innopac.unav.es/record=b31656304*spi
Descripción
Sumario:The Lyapunov and Riccati equations are two of the fundamental equations of control and system theory, having special relevance for system identification, optimization, boundary value problems, power systems, signal processing, and communications. The Lyapunov Matrix Equation in System Stability and Control covers mathematical developments and applications while providing quick and easy references for solutions to engineering and mathematical problems. Examples of real-world systems are given throughout the text in order to demonstrate the effectiveness of the presented methods and algorithms. The book will appeal to practicing engineers, theoreticians, applied mathematicians, and graduate students who seek a comprehensive view of the main results of the Lyapunov matrix equation. Presents techniques for solving and analyzing the algebraic, differential, and difference Lyapunov matrix equations of continuous-time and discrete-time systems Offers summaries and references at the end of each chapter Contains examples of the use of the equation to solve real-world problems Provides quick and easy references for the solutions to engineering and mathematical problems using the Lyapunov equation.
Descripción Física:xii, 255 p.
Formato:Forma de acceso: World Wide Web.
Bibliografía:Incluye referencias bibliográficas e índice.
ISBN:9780122733703
9780080535678
9781281032911