Security considerations in RAG deployments

In this video shortcuts collection, you will learn how Vector databases and the vectorization of data are essential components that enable the retrieval-augmented generation (RAG) approach, allowing AI models to access and leverage relevant external information to improve the accuracy, reliability,...

Descripción completa

Detalles Bibliográficos
Autor Corporativo: O'Reilly (Firm), publisher (publisher)
Otros Autores: Stewart, Blaize, instructor (instructor)
Formato: Vídeo online
Idioma:Inglés
Publicado: [Sebastopol, California] : O'Reilly Media, Inc [2024]
Edición:[First edition]
Colección:Shortcuts (O'Reilly (Firm))
Materias:
Ver en Biblioteca Universitat Ramon Llull:https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009835411906719
Descripción
Sumario:In this video shortcuts collection, you will learn how Vector databases and the vectorization of data are essential components that enable the retrieval-augmented generation (RAG) approach, allowing AI models to access and leverage relevant external information to improve the accuracy, reliability, and transparency of their outputs. Data engineers and software developers working with generative AI should have a strong grasp of vector databases, text embeddings, the RAG architecture, and the integration of these components to build reliable, accurate, and scalable AI-powered applications. Leverage practical, hands-on approaches to data to effectively harness the power of Retrieval-Augmented Generation and vector databases to build reliable, accurate, and scalable AI-powered applications that deliver tangible value to your users.
Descripción Física:1 online resource (1 video file (15 min.)) : sound, color