Praktyczna algebra liniowa dla analityków danych od podstawowych koncepcji do użytecznych aplikacji w Pythonie

Pozornie nie dzieje się nic złego, jeśli inżynier lub analityk danych nie rozumie algebry liniowej. Może korzystać z już istniejących narzędzi i nie przejmować się szczegółami ich implementacji. Warto jednak dokładnie poznać algorytmy używane w nauce o danych i dostosować do swoich pot...

Descripción completa

Detalles Bibliográficos
Otros Autores: Cohen, Mike X., 1979- author (author), Kamiński, Filip, translator (translator)
Formato: Libro electrónico
Idioma:Pocaco
Publicado: Gliwice : Helion [2024]
Edición:[First edition]
Materias:
Ver en Biblioteca Universitat Ramon Llull:https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009825852406719
Descripción
Sumario:Pozornie nie dzieje się nic złego, jeśli inżynier lub analityk danych nie rozumie algebry liniowej. Może korzystać z już istniejących narzędzi i nie przejmować się szczegółami ich implementacji. Warto jednak dokładnie poznać algorytmy używane w nauce o danych i dostosować do swoich potrzeb istniejące metody obliczeniowe, tutaj więc nowoczesna algebra liniowa okazuje się nieodzowna. Jeśli chcesz ją poznać w nowoczesnej, praktycznej formie, najlepiej posłużyć się kodem i zastosowaniem algebry liniowej w analizie danych czy symulacjach numerycznych. To książka przeznaczona dla osób, które pracują ze zbiorami danych. Jest praktycznym przewodnikiem po koncepcjach algebry liniowej, pomyślanym tak, by ułatwić ich zrozumienie i zastosowanie w użytecznych obliczeniach. Poszczególne zagadnienia przedstawiono za pomocą kodu Pythona, wraz z przykładami ich wykorzystania w nauce o danych, uczeniu maszynowym, uczeniu głębokim, symulacjach i przetwarzaniu danych biomedycznych. Dzięki podręcznikowi nauczysz się arytmetyki macierzowej, poznasz istotne rozkłady macierzy, w tym LU i QR, a także rozkład według wartości osobliwych, zapoznasz się też z takimi zagadnieniami jak model najmniejszych kwadratów i analiza głównych składowych.
Descripción Física:1 online resource (288 pages) : illustrations
ISBN:9788328902619