Building custom transformers and estimators to extend PySpark's ML Pipelines

ML Pipelines are one of the best way to organize your ML code. In this video, we extend PySpark's ML Pipelines with our own components. Flexible, powerful, fast, pick three!.

Detalles Bibliográficos
Autor Corporativo: Manning (Firm), publisher (publisher)
Otros Autores: Rioux, Jonathan, presenter (presenter)
Formato: Video
Idioma:Inglés
Publicado: [Place of publication not identified] : Manning Publications 2021.
Edición:[First edition]
Materias:
Ver en Biblioteca Universitat Ramon Llull:https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009822993006719
Descripción
Sumario:ML Pipelines are one of the best way to organize your ML code. In this video, we extend PySpark's ML Pipelines with our own components. Flexible, powerful, fast, pick three!.
Descripción Física:1 online resource (1 video file (59 min.)) : sound, color