Building custom transformers and estimators to extend PySpark's ML Pipelines
ML Pipelines are one of the best way to organize your ML code. In this video, we extend PySpark's ML Pipelines with our own components. Flexible, powerful, fast, pick three!.
Autor Corporativo: | |
---|---|
Otros Autores: | |
Formato: | Video |
Idioma: | Inglés |
Publicado: |
[Place of publication not identified] :
Manning Publications
2021.
|
Edición: | [First edition] |
Materias: | |
Ver en Biblioteca Universitat Ramon Llull: | https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009822993006719 |
Sumario: | ML Pipelines are one of the best way to organize your ML code. In this video, we extend PySpark's ML Pipelines with our own components. Flexible, powerful, fast, pick three!. |
---|---|
Descripción Física: | 1 online resource (1 video file (59 min.)) : sound, color |