Sumario: | Esta obra pretende ser una herramienta de apoyo y de consulta para estudiantes y profesionales interesados en dominar los fundamentos del aprendizaje automático y profundo, y así poder desarrollar sus propios modelos de aprendizaje aptos para realizar predicciones con base en los datos, para ello el autor combina explicaciones teóricas con ejemplos prácticos. El libro se inicia con explicaciones sobre el lenguaje Python, para luego abarcar los algoritmos más destacados dentro del aprendizaje de máquina. El contenido se encuentra dividido en dos partes: la primera enfocada en el machine learning y sus diferentes algoritmos de regresión y clasificación, clustering, entre otros. La segunda parte comprende varias técnicas de deep learning donde estudiaremos diferentes arquitecturas de redes neuronales como: redes densamente conectadas, redes convolucionales y redes recurrentes. Desde la web del libro podrá descargar los ejemplos y ejercicios que se desarrollan en el libro lo que facilitara al lector a asimilar lo aprendido.
|