Zaawansowana analiza danych w PySpark metody przetwarzania informacji na szeroką skalę z wykorzystaniem Pythona i systemu Spark

Potrzeby w zakresie analizy dużych zbiorów danych i wyciągania z nich użytecznych informacji stale rosną. Spośród dostępnych narzędzi przeznaczonych do tych zastosowań szczególnie przydatny jest PySpark - interfejs API systemu Spark dla języka Python. Apache Spark świetnie się nadaje d...

Descripción completa

Detalles Bibliográficos
Otros Autores: Tandon, Akash, author (author), Ryza, Sandy, author (translator), Laserson, Uri, 1983- author, Owen, Sean, author, Wills, Josh, author, Watrak, Andrzej, translator
Formato: Libro electrónico
Idioma:Pocaco
Publicado: Gliwice : Helion [2023]
Edición:[First edition]
Materias:
Ver en Biblioteca Universitat Ramon Llull:https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009752734806719
Descripción
Sumario:Potrzeby w zakresie analizy dużych zbiorów danych i wyciągania z nich użytecznych informacji stale rosną. Spośród dostępnych narzędzi przeznaczonych do tych zastosowań szczególnie przydatny jest PySpark - interfejs API systemu Spark dla języka Python. Apache Spark świetnie się nadaje do analizy dużych zbiorów danych, a PySpark skutecznie ułatwia integrację Sparka ze specjalistycznymi narzędziami PyData. By jednak można było w pełni skorzystać z tych możliwości, konieczne jest zrozumienie interakcji między algorytmami, zbiorami danych i wzorcami używanymi w analizie danych. Oto praktyczny przewodnik po wersji 3.0 systemu Spark, metodach statystycznych i rzeczywistych zbiorach danych. Omówiono w nim zasady rozwiązywania problemów analitycznych za pomocą interfejsu PySpark, z wykorzystaniem dobrych praktyk programowania w systemie Spark. Po lekturze można bezproblemowo zagłębić się we wzorce analityczne oparte na popularnych technikach przetwarzania danych, takich jak klasyfikacja, grupowanie, filtrowanie i wykrywanie anomalii, stosowane w genomice, bezpieczeństwie systemów IT i finansach. Dodatkowym plusem są opisy wykorzystania przetwarzania obrazów i języka naturalnego. Zaletą jest też szereg rzeczywistych przykładów dużych zbiorów danych i ich zaawansowanej analizy.
Descripción Física:1 online resource (192 pages) : illustrations
ISBN:9788383220703