Stochastic Range Estimation Algorithms for Electric Vehicles using Data-Driven Learning Models
This work aims at improving the energy consumption forecast of electric vehicles by enhancing the prediction with a notion of uncertainty. The algorithm itself learns from driver and traffic data in a training set to generate accurate, driver-individual energy consumption forecasts.
Otros Autores: | |
---|---|
Formato: | Libro electrónico |
Idioma: | Inglés |
Publicado: |
Karlsruhe
KIT Scientific Publishing
2022
|
Colección: | Karlsruher Schriftenreihe Fahrzeugsystemtechnik
|
Materias: | |
Ver en Biblioteca Universitat Ramon Llull: | https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009666902806719 |
Sumario: | This work aims at improving the energy consumption forecast of electric vehicles by enhancing the prediction with a notion of uncertainty. The algorithm itself learns from driver and traffic data in a training set to generate accurate, driver-individual energy consumption forecasts. |
---|---|
Descripción Física: | 1 electronic resource (192 p.) |