Sumario: | En aquesta investigació, s'han examinat tècniques d'optimització per resoldre problemes de restriccions i s'ha fet un estudi de l'era quàntica i de les empreses líders del mercat, com ara IBM, D-Wave, Google, Xanadu, AWS-Braket i Microsoft. S'ha après sobre la comunitat, les plataformes, l'estat de les investigacions i s'han estudiat els postulats de la mecànica quàntica que serveixen per crear els sistemes i algorismes quàntics més eficients. Per tal de saber si és possible resoldre problemes de Problema de cerca de restriccions (CSP) de manera més eficient amb la computació quàntica, es va definir un escenari perquè tant la computació clàssica com la quàntica tinguessin un bon punt de referència. En primer lloc, la prova de concepte es centra en el problema de programació dels treballadors socials i més tard en el tema de la preparació per lots i la selecció de comandes com a generalització del Problema dels treballadors socials (SWP). El problema de programació dels treballadors socials és una mena de problema d'optimització combinatòria que, en el millor dels casos, es pot resoldre en temps exponencial; veient que el SWP és NP-Hard, proposa fer servir un altre enfoc més enllà de la computació clàssica per a la seva resolució. Avui dia, el focus a la computació quàntica ja no és només per la seva enorme capacitat informàtica sinó també, per l'ús de la seva imperfecció en aquesta era Noisy Intermediate-Scale Quantum (NISQ) per crear un poderós dispositiu d'aprenentatge automàtic que utilitza el principi variacional per resoldre problemes d'optimització en reduir la classe de complexitat. A la tesi es proposa una formulació (quadràtica) per resoldre el problema de l'horari dels treballadors socials de manera eficient utilitzant Variational Quantum Eigensolver (VQE), Quantum Approximate Optimization Algorithm (QAOA), Minimal Eigen Optimizer i ADMM optimizer. La viabilitat quàntica de l'algorisme s'ha modelat en forma QUBO, amb Docplex simulat Cirq, Or-Tools i provat a ordinadors IBMQ.Després d'analitzar els resultats de l'enfocament anterior, es va dissenyar un escenari per resoldre el SWP com a raonament basat en casos (qCBR), tant quànticament com clàssicament. I així poder contribuir amb un algorisme quàntic centrat en la intel·ligència artificial i l'aprenentatge automàtic. El qCBR és una tècnica d’aprenentatge automàtic basada en la resolució de nous problemes que utilitza l’experiència, com ho fan els humans. L'experiència es representa com una memòria de casos que conté qüestions prèviament resoltes i utilitza una tècnica de síntesi per adaptar millor l'experiència al problema nou.A la definició de SWP, si en lloc de pacients es tenen lots de comandes i en lloc de treballadors socials robots mòbils, es generalitza la funció objectiu i les restriccions. Per això, s'ha proposat una prova de concepte i una nova formulació per resoldre els problemes de picking i batching anomenat qRobot. Es va fer una prova de concepte en aquesta part del projecte mitjançant una Raspberry Pi 4 i es va provar la capacitat d'integració de la computació quàntica dins de la robòtica mòbil, amb un dels problemes més demandats en aquest sector industrial: problemes de picking i batching. Es va provar en diferents tecnologies i els resultats van ser prometedors. A més, en cas de necessitat computacional, el robot paral·lelitza part de les operacions en computació híbrida (quàntica + clàssica), accedint a CPU i QPU distribuïts en un núvol públic o privat. A més, s’ha desenvolupat un entorn estable (ARM64) dins del robot (Raspberry) per executar operacions de gradient i altres algorismes quàntics a IBMQ, Amazon Braket (D-Wave) i Pennylane de forma local o remota.Per millorar el temps d’execució dels algorismes variacionals en aquesta era NISQ i la següent, s’ha proposat EVA: un algorisme d’aproximació de Valor Exponencial quàntic. Fins ara, el VQE és el vaixell insígnia de la computació quàntica. Avui dia, a les plataformes líders del mercat de computació quàntica al núvol, el cost de l'experimentació dels circuits quàntics és proporcional al nombre de circuits que s'executen en aquestes plataformes. És a dir, amb més circuits més cost. Una de les coses que aconsegueix el VQE, el vaixell insígnia d'aquesta era de pocs qubits, és la poca profunditat en dividir el Hamiltonià en una llista de molts petits circuits (matrius de Pauli). Però aquest mateix fet, fa que simular amb el VQE sigui molt car al núvol. Per aquesta mateixa raó, es va dissenyar EVA per poder calcular el valor esperat amb un únic circuit.Tot i haver respost a la hipòtesi d'aquesta tesis amb tots els estudis realitzats, encara es pot continuar investigant per proposar nous algorismes quàntics per millorar problemes d'optimització.
|