Machine Learning in R—Automated Algorithms for Business Analysis

In the world of big data, analysis by traditional statistical methods is no longer sufficient. The amount of data and the number of potential relationships that could be analyzed is simply too complex to conduct manually. In this video, you'll learn a better way: how to automate the analysis of...

Descripción completa

Detalles Bibliográficos
Otros Autores: Grogan, Michael, author (author)
Formato: Video
Idioma:Inglés
Publicado: O'Reilly Media, Inc 2018.
Edición:1st edition
Materias:
Ver en Biblioteca Universitat Ramon Llull:https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009631559906719
Descripción
Sumario:In the world of big data, analysis by traditional statistical methods is no longer sufficient. The amount of data and the number of potential relationships that could be analyzed is simply too complex to conduct manually. In this video, you'll learn a better way: how to automate the analysis of big data by using machine learning techniques in R. You'll explore the cornerstone methods of machine learning (i.e., k-means clustering, decision trees, random forests, and neural networks); you'll incorporate these methods inside R to construct a set of machine learning algorithms; and then you'll deploy these algorithms against a real-world dataset to perform a high-value business analysis of the data. Course prerequisites include basic knowledge of linear algebra, probability, statistics, and familiarity with R. Gain hands-on experience with machine learning and R using a real-world dataset Understand k-means clustering, decision trees, random forests, and neural networks Learn how to run a variety of machine learning techniques using R Discover how to test the validity of results through use of training and test data Michael Grogan is a data scientist who specializes in R, Python, and Shiny. As a consultant, Michael provides data science solutions to clients in healthcare, finance, and government. As an educator, Michael creates data science tutorials for organizations such as Data Science Central, Sitepoint, and O'Reilly Media. He holds a Master's degree in business economics from University College Cork.
Notas:Title from title screen (viewed February 13, 2018).
Date of publication from resource description page.
Descripción Física:1 online resource (1 video file, approximately 39 min.)