Markov decision processes in artificial intelligence MDPs, beyond MDPs and applications

Markov Decision Processes (MDPs) are a mathematical framework for modeling sequential decision problems under uncertainty as well as Reinforcement Learning problems. Written by experts in the field, this book provides a global view of current research using MDPs in Artificial Intelligence. It starts...

Descripción completa

Detalles Bibliográficos
Otros Autores: Sigaud, Olivier (-), Buffet, Olivier
Formato: Libro electrónico
Idioma:Inglés
Publicado: London : Hoboken, N.J. : Wiley, ISTE 2010.
Colección:Safari tech books online.
Wiley UBCM ebooks.
ISTE
Materias:
Ver en Biblioteca Universitat Ramon Llull:https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009628185206719
Descripción
Sumario:Markov Decision Processes (MDPs) are a mathematical framework for modeling sequential decision problems under uncertainty as well as Reinforcement Learning problems. Written by experts in the field, this book provides a global view of current research using MDPs in Artificial Intelligence. It starts with an introductory presentation of the fundamental aspects of MDPs (planning in MDPs, Reinforcement Learning, Partially Observable MDPs, Markov games and the use of non-classical criteria). Then it presents more advanced research trends in the domain and gives some concrete examples using illustr
Notas:First published 2008 in France by Hermes Science/Lavoisier in two volumes entitled: Processus decisionnels de Markov en intelligence artificielle.
Descripción Física:1 online resource (457 pages)
Bibliografía:Includes bibliographical references and index.
ISBN:9781118620106
9781118557426
9781299315471
9781118619872