Hamiltonian methods in the theory of solitons

The main characteristic of this now classic exposition of the inverse scattering method and its applications to soliton theory is its consistent Hamiltonian approach to the theory. The nonlinear Schrödinger equation, rather than the (more usual) KdV equation, is considered as a main example. The inv...

Descripción completa

Detalles Bibliográficos
Autor Corporativo: SpringerLink (Online service) (-)
Otros Autores: Faddeev, L. D., author (author), Takhtadzhi͡an, L. A. (Leon Armenovich), author (translator), Reyman, Alexey G., translator
Formato: Libro electrónico
Idioma:Inglés
Publicado: Berlin ; Heidelberg : Springer 2007.
Edición:1st ed. 2007.
Colección:Classics in mathematics.
Materias:
Ver en Biblioteca Universitat Ramon Llull:https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009461492306719
Descripción
Sumario:The main characteristic of this now classic exposition of the inverse scattering method and its applications to soliton theory is its consistent Hamiltonian approach to the theory. The nonlinear Schrödinger equation, rather than the (more usual) KdV equation, is considered as a main example. The investigation of this equation forms the first part of the book. The second part is devoted to such fundamental models as the sine-Gordon equation, Heisenberg equation, Toda lattice, etc, the classification of integrable models and the methods for constructing their solutions.
Notas:"Reprint of the 1987 edition"--Title page.
Descripción Física:1 online resource (596 p.)
Bibliografía:Includes bibliographical references and index.
ISBN:9781281043399
9786611043391
9783540699699