Efficient Reinforcement Learning using Gaussian Processes

This book examines Gaussian processes in both model-based reinforcement learning (RL) and inference in nonlinear dynamic systems.First, we introduce PILCO, a fully Bayesian approach for efficient RL in continuous-valued state and action spaces when no expert knowledge is available. PILCO takes model...

Descripción completa

Detalles Bibliográficos
Otros Autores: Deisenroth, Marc Peter (auth)
Formato: Libro electrónico
Idioma:Inglés
Publicado: KIT Scientific Publishing 2010
Colección:Karlsruhe Series on Intelligent Sensor-Actuator-Systems / Karlsruher Institut für Technologie, Intelligent Sensor-Actuator-Systems Laboratory
Materias:
Ver en Biblioteca Universitat Ramon Llull:https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009439497306719
Descripción
Sumario:This book examines Gaussian processes in both model-based reinforcement learning (RL) and inference in nonlinear dynamic systems.First, we introduce PILCO, a fully Bayesian approach for efficient RL in continuous-valued state and action spaces when no expert knowledge is available. PILCO takes model uncertainties consistently into account during long-term planning to reduce model bias. Second, we propose principled algorithms for robust filtering and smoothing in GP dynamic systems.
Descripción Física:1 electronic resource (IX, 205 p. p.)
ISBN:9781000019797