Efficient Reinforcement Learning using Gaussian Processes
This book examines Gaussian processes in both model-based reinforcement learning (RL) and inference in nonlinear dynamic systems.First, we introduce PILCO, a fully Bayesian approach for efficient RL in continuous-valued state and action spaces when no expert knowledge is available. PILCO takes model...
Otros Autores: | |
---|---|
Formato: | Libro electrónico |
Idioma: | Inglés |
Publicado: |
KIT Scientific Publishing
2010
|
Colección: | Karlsruhe Series on Intelligent Sensor-Actuator-Systems / Karlsruher Institut für Technologie, Intelligent Sensor-Actuator-Systems Laboratory
|
Materias: | |
Ver en Biblioteca Universitat Ramon Llull: | https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009439497306719 |
Sumario: | This book examines Gaussian processes in both model-based reinforcement learning (RL) and inference in nonlinear dynamic systems.First, we introduce PILCO, a fully Bayesian approach for efficient RL in continuous-valued state and action spaces when no expert knowledge is available. PILCO takes model uncertainties consistently into account during long-term planning to reduce model bias. Second, we propose principled algorithms for robust filtering and smoothing in GP dynamic systems. |
---|---|
Descripción Física: | 1 electronic resource (IX, 205 p. p.) |
ISBN: | 9781000019797 |