Wavelet analysis on the sphere spheroidal wavelets
This monograph is concerned with wavelet harmonic analysis on the sphere. By starting with orthogonal polynomials and functional Hilbert spaces on the sphere, the foundations are laid for the study of spherical harmonics such as zonal functions. The book also discusses the construction of wavelet ba...
Autor Corporativo: | |
---|---|
Otros Autores: | , , |
Formato: | Libro electrónico |
Idioma: | Inglés |
Publicado: |
Berlin, [Germany] ; Boston, [Massachusetts] :
De Gruyter
2017
2017. |
Materias: | |
Ver en Biblioteca Universitat Ramon Llull: | https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009437762606719 |
Sumario: | This monograph is concerned with wavelet harmonic analysis on the sphere. By starting with orthogonal polynomials and functional Hilbert spaces on the sphere, the foundations are laid for the study of spherical harmonics such as zonal functions. The book also discusses the construction of wavelet bases using special functions, especially Bessel, Hermite, Tchebychev, and Gegenbauer polynomials. ContentsReview of orthogonal polynomialsHomogenous polynomials and spherical harmonicsReview of special functionsSpheroidal-type wavelets Some applicationsSome applications |
---|---|
Descripción Física: | 1 online resource (156 pages) : illustrations, tables |
Bibliografía: | Includes bibliographical references. |
ISBN: | 9783110481242 |