Compressive Sensing for Wireless Communication

Compressed Sensing (CS) is a promising method that recovers the sparse and compressible signals from severely under-sampled measurements. CS can be applied to wireless communication to enhance its capabilities. As this technology is proliferating, it is possible to explore its need and benefits for...

Descripción completa

Detalles Bibliográficos
Autor principal: Sankararajan, Radha (-)
Otros Autores: Rajendran, Hemalatha, Sukumaran, Aasha Nandhini
Formato: Libro electrónico
Idioma:Inglés
Publicado: Aalborg : River Publishers 2016.
Colección:EBSCO Academic eBook Collection Complete.
River Publishers Series in Communications.
Acceso en línea:Conectar con la versión electrónica
Ver en Universidad de Navarra:https://innopac.unav.es/record=b47413128*spi
Tabla de Contenidos:
  • Intro
  • Front Cover
  • Half Title
  • RIVER PUBLISHERS SERIES IN COMMUNICATIONS
  • Title page
  • Compressive Sensingf or Wireless Communication: Challenges and Opportunities
  • Copyright Page
  • Content
  • Preface
  • Acknowledgement
  • List of Figures
  • List of Tables
  • List of Algorithms
  • List of Abbreviations
  • Chapter 1
  • Introduction
  • 1.1 Overview
  • 1.2 Motivation
  • 1.3 Traditional Sampling
  • 1.4 Conventional Data Acquisition System
  • 1.4.1 Data Acquisition System
  • 1.4.2 Functional Components of DAQ
  • 1.4.3 Digital Image Acquisition
  • 1.5 Transform Coding.
  • 1.5.1 Need for Transform Coding
  • 1.5.2 Drawbacks of Transform Coding
  • 1.6 Compressed Sensing
  • 1.6.1 Sparsity and Signal Recovery
  • 1.6.2 CS Recovery Algorithms
  • 1.6.3 Compressed Sensing for Audio
  • 1.6.4 Compressed Sensing for Image
  • 1.6.5 Compressed Sensing for Video
  • 1.6.6 Compressed Sensing for Computer Vision
  • 1.6.7 Compressed Sensing for Cognitive Radio Networks
  • 1.6.8 Compressed Sensing for Wireless Networks
  • 1.6.9 Compressed Sensing for Wireless Sensor Networks
  • 1.7 Book Outline
  • References
  • Chapter 2
  • Compressed Sensing: Sparsity and Signal Recovery.
  • 2.1 Introduction
  • 2.2 Compressed Sensing
  • 2.2.1 Compressed Sensing Process
  • 2.2.2 What Is the Need for Compressed Sensing?
  • 2.2.3 Adaptations of CS Theory
  • 2.2.4 Mathematical Background
  • 2.2.5 Sparse Filtering and Dynamic Compressed Sensing
  • 2.3 Signal Representation
  • 2.3.1 Sparsity
  • 2.4 Basis Vectors
  • 2.4.1 Fourier Transform
  • 2.4.2 Discrete Cosine Transform
  • 2.4.3 DiscreteWavelet Transform
  • 2.4.4 Curvelet Transform
  • 2.4.5 Contourlet Transform
  • 2.4.6 Surfacelet Transform
  • 2.4.7 Karhunen-Loève Theorem
  • 2.5 Restricted Isometry Property
  • 2.6 Coherence.
  • 2.7 Stable Recovery
  • 2.8 Number of Measurements
  • 2.9 Sensing Matrix
  • 2.9.1 Null-Space Conditions
  • 2.9.2 Restricted Isometry Property
  • 2.9.3 Gaussian Matrix
  • 2.9.4 Toeplitz and Circulant Matrix
  • 2.9.5 Binomial Sampling Matrix
  • 2.9.6 Structured Random Matrix
  • 2.9.7 Kronecker Product Matrix
  • 2.9.8 Combination Matrix
  • 2.9.9 Hybrid Matrix
  • 2.10 Sparse Recovery Algorithms
  • 2.10.1 Signal Recovery in Noise
  • 2.11 Applications of Compressed Sensing
  • 2.12 Summary
  • References
  • Chapter 3
  • Recovery Algorithms
  • 3.1 Introduction
  • 3.2 Conditions for Perfect Recovery.
  • 3.2.1 Sensing Matrices
  • 3.2.1.1 Null-space conditions
  • 3.2.1.2 The restricted isometry property
  • 3.2.2 Sensing Matrix Constructions
  • 3.3 L1 Minimization
  • 3.3.1 L1 Minimization Algorithms
  • 3.4 Greedy Algorithms
  • 3.4.1 Matching Pursuit (MP)
  • 3.4.1.1 Orthogonal matching pursuit (OMP)
  • 3.4.1.2 Directional pursuits
  • 3.4.1.3 Gradient pursuits
  • 3.4.1.4 StOMP
  • 3.4.1.5 ROMP
  • 3.4.1.6 CoSaMP
  • 3.4.1.7 Subspace pursuit (SP)
  • 3.5 Iterative Hard Thresholding
  • 3.5.1 Empirical Comparisons
  • 3.6 FOCUSS
  • 3.7 MUSIC
  • 3.8 Model-based Algorithms
  • 3.8.1 Model-based CoSaMP.