Compressive Sensing for Wireless Communication
Compressed Sensing (CS) is a promising method that recovers the sparse and compressible signals from severely under-sampled measurements. CS can be applied to wireless communication to enhance its capabilities. As this technology is proliferating, it is possible to explore its need and benefits for...
Autor principal: | |
---|---|
Otros Autores: | , |
Formato: | Libro electrónico |
Idioma: | Inglés |
Publicado: |
Aalborg :
River Publishers
2016.
|
Colección: | EBSCO Academic eBook Collection Complete.
River Publishers Series in Communications. |
Acceso en línea: | Conectar con la versión electrónica |
Ver en Universidad de Navarra: | https://innopac.unav.es/record=b47413128*spi |
Tabla de Contenidos:
- Intro
- Front Cover
- Half Title
- RIVER PUBLISHERS SERIES IN COMMUNICATIONS
- Title page
- Compressive Sensingf or Wireless Communication: Challenges and Opportunities
- Copyright Page
- Content
- Preface
- Acknowledgement
- List of Figures
- List of Tables
- List of Algorithms
- List of Abbreviations
- Chapter 1
- Introduction
- 1.1 Overview
- 1.2 Motivation
- 1.3 Traditional Sampling
- 1.4 Conventional Data Acquisition System
- 1.4.1 Data Acquisition System
- 1.4.2 Functional Components of DAQ
- 1.4.3 Digital Image Acquisition
- 1.5 Transform Coding.
- 1.5.1 Need for Transform Coding
- 1.5.2 Drawbacks of Transform Coding
- 1.6 Compressed Sensing
- 1.6.1 Sparsity and Signal Recovery
- 1.6.2 CS Recovery Algorithms
- 1.6.3 Compressed Sensing for Audio
- 1.6.4 Compressed Sensing for Image
- 1.6.5 Compressed Sensing for Video
- 1.6.6 Compressed Sensing for Computer Vision
- 1.6.7 Compressed Sensing for Cognitive Radio Networks
- 1.6.8 Compressed Sensing for Wireless Networks
- 1.6.9 Compressed Sensing for Wireless Sensor Networks
- 1.7 Book Outline
- References
- Chapter 2
- Compressed Sensing: Sparsity and Signal Recovery.
- 2.1 Introduction
- 2.2 Compressed Sensing
- 2.2.1 Compressed Sensing Process
- 2.2.2 What Is the Need for Compressed Sensing?
- 2.2.3 Adaptations of CS Theory
- 2.2.4 Mathematical Background
- 2.2.5 Sparse Filtering and Dynamic Compressed Sensing
- 2.3 Signal Representation
- 2.3.1 Sparsity
- 2.4 Basis Vectors
- 2.4.1 Fourier Transform
- 2.4.2 Discrete Cosine Transform
- 2.4.3 DiscreteWavelet Transform
- 2.4.4 Curvelet Transform
- 2.4.5 Contourlet Transform
- 2.4.6 Surfacelet Transform
- 2.4.7 Karhunen-Loève Theorem
- 2.5 Restricted Isometry Property
- 2.6 Coherence.
- 2.7 Stable Recovery
- 2.8 Number of Measurements
- 2.9 Sensing Matrix
- 2.9.1 Null-Space Conditions
- 2.9.2 Restricted Isometry Property
- 2.9.3 Gaussian Matrix
- 2.9.4 Toeplitz and Circulant Matrix
- 2.9.5 Binomial Sampling Matrix
- 2.9.6 Structured Random Matrix
- 2.9.7 Kronecker Product Matrix
- 2.9.8 Combination Matrix
- 2.9.9 Hybrid Matrix
- 2.10 Sparse Recovery Algorithms
- 2.10.1 Signal Recovery in Noise
- 2.11 Applications of Compressed Sensing
- 2.12 Summary
- References
- Chapter 3
- Recovery Algorithms
- 3.1 Introduction
- 3.2 Conditions for Perfect Recovery.
- 3.2.1 Sensing Matrices
- 3.2.1.1 Null-space conditions
- 3.2.1.2 The restricted isometry property
- 3.2.2 Sensing Matrix Constructions
- 3.3 L1 Minimization
- 3.3.1 L1 Minimization Algorithms
- 3.4 Greedy Algorithms
- 3.4.1 Matching Pursuit (MP)
- 3.4.1.1 Orthogonal matching pursuit (OMP)
- 3.4.1.2 Directional pursuits
- 3.4.1.3 Gradient pursuits
- 3.4.1.4 StOMP
- 3.4.1.5 ROMP
- 3.4.1.6 CoSaMP
- 3.4.1.7 Subspace pursuit (SP)
- 3.5 Iterative Hard Thresholding
- 3.5.1 Empirical Comparisons
- 3.6 FOCUSS
- 3.7 MUSIC
- 3.8 Model-based Algorithms
- 3.8.1 Model-based CoSaMP.