Calculus and Linear Algebra in Recipes Terms, phrases and numerous examples in short learning units

Have you ever cooked a 3-course meal from a recipe? That generally works out pretty well, even if you're not much of a cook. What does this have to do with mathematics? Well, you can solve a lot of math problems recipe-wise, too: Need to solve a Riccati's differential equation or the singu...

Descripción completa

Detalles Bibliográficos
Autor Corporativo: SpringerLink (-)
Otros Autores: Karpfinger, Christian, autor (autor)
Formato: Libro electrónico
Idioma:Inglés
Publicado: Berlin, Heidelberg : Springer Berlin Heidelberg 2022.
Edición:1st ed
Colección:Springer eBooks.
Acceso en línea:Conectar con la versión electrónica
Ver en Universidad de Navarra:https://innopac.unav.es/record=b47244215*spi
Tabla de Contenidos:
  • Preface
  • 1 Ways of speaking, symbols and quantities
  • 2 The natural, whole and rational numbers
  • 3 The real numbers
  • 4 Machine numbers
  • 5 Polynomials
  • 6 Trigonometric functions
  • 7 Complex numbers - Cartesian coordinates
  • 8 Complex numbers - Polar coordinates
  • 9 Systems of linear equations
  • 10 Calculating with matrices
  • 11 LR-decomposition of a matrix
  • 12 The determinant
  • 13 Vector spaces
  • 14 Generating systems and linear (in)dependence
  • 15 Bases of vector spaces
  • 16 Orthogonality I
  • 17 Orthogonality II
  • 18 The linear balancing problem
  • 14 The linear balancing problem. 14 Generating systems and linear (in)dependence
  • 15 Bases of vector spaces
  • 16 Orthogonality I
  • 17 Orthogonality II
  • 18 The linear compensation problem
  • 19 The QR-decomposition of a matrix
  • 20 Sequences
  • 21 Computation of limit values of sequences
  • 22 Series
  • 23 Illustrations
  • 24 Power series
  • 25 Limit values and continuity
  • 26 Differentiation
  • 27 Applications of differential calculus I
  • 28 Applications of differential calculus I
  • 28 Applications of differential calculus II
  • 28 Applications of differential calculus I
  • 28 Applications of differential calculus II. 28 Applications of differential calculus II
  • 29 Polynomial and spline interpolation
  • 30 Integration I
  • 31 Integration II
  • 32 Improper integrals
  • 33 Separable and linear differential equations of the 1st order
  • 34 Linear differential equations with constant coefficients
  • 35 Some special types of differential equations
  • 36 Numerics of ordinary differential equations I
  • 37 Linear mappings and representation matrices
  • 38 Basic transformation
  • 39 Diagonalization - Eigenvalues and eigenvectors
  • 40 Numerical computation of eigenvalues and eigenvectors
  • 41 Quadrics
  • 42 Schurz decomposition and singular value decomposition
  • 43 Jordan normal form I
  • 44 Jordan normal form II
  • 45 Definiteness and matrix norms
  • 46 Functions of several variables
  • 47 Partial differentiation - gradient, Hessian matrix, Jacobian matrix
  • 48 Applications of partial derivatives
  • 49 Determination of extreme values
  • 50 Determination of extreme values under constraints
  • 51 Total differentiation, differential operators
  • 52 Implicit functions
  • 53 Coordinate transformations
  • 54 Curves I
  • 55 Curves II
  • 56 Curve integrals
  • 57 Gradient fields
  • 58 Domain integrals
  • 59 The transformation formula
  • 60 Areas and area integrals
  • 61 Integral theorems I
  • 62 Integral theorems II
  • 63 General about differential equations
  • 64 The exact differential equation
  • 65 Systems of linear differential equations I
  • 66 Systems of linear differential equations II
  • 67 Systems of linear differential equations II
  • 68 Boundary value problems
  • 69 Basic concepts of numerics
  • 70 Fixed point iteration
  • 71 Iterative methods for systems of linear equations
  • 72 Optimization
  • 73 Numerics of ordinary differential equations II
  • 74 Fourier series - Calculation of Fourier coefficients
  • 75 Fourier series - Background, theorems and application
  • 76 Fourier transform I
  • 77 Fourier transform II
  • 78 Discrete Fourier transform
  • 79 The Laplacian transform
  • 80 Holomorphic functions
  • 81 Complex integration
  • 82 Laurent series
  • 83 The residue calculus
  • 84 Conformal mappings
  • 85 Harmonic functions and Dirichlet's boundary value problem
  • 86 Partial differential equations 1st order
  • 87 Partial differential equations 2nd order - General
  • 88 The Laplace or Poisson equation
  • 89 The heat conduction equation
  • 90 The wave equation
  • 91 Solving pDGLs with Fourier and Laplace transforms
  • Index.