Algorithmic learning in a random world
"Algorithmic Learning in a Random World describes recent theoretical and experimental developments in building computable approximations to Kolmogorov's algorithmic notion of randomness. Based on these approximations, a new set of machine learning algorithms have been developed that can be...
Otros Autores: | , , |
---|---|
Formato: | Libro |
Idioma: | Inglés |
Publicado: |
New York :
Springer
[2005]
|
Materias: | |
Ver en Universidad de Navarra: | https://innopac.unav.es/record=b46292822*spi |
Tabla de Contenidos:
- Counter Preface.- List of Principal results.- Introduction.- Conformal prediction.- Classification with conformal predictors.-Modifications of conformal predictors.- Probabilistic prediction I: impossibility results.- Probabilistic prediction II: Venn predictors.- Beyond exchangeability.- On-line compression modeling I: conformal prediction.- On-line compression modeling II: Venn prediction.- Perspectives and contrasts.- Appendix A: Probability theory.- Appendix B: Data sets.- Appendix C: FAQ.- Notation.- References.- Index