An introduction to computational stochastic PDEs
This book gives a comprehensive introduction to numerical methods and analysis of stochastic processes, random fields and stochastic differential equations, and offers graduate students and researchers powerful tools for understanding uncertainty quantification for risk analysis. Coverage includes t...
Otros Autores: | , , |
---|---|
Formato: | Libro electrónico |
Idioma: | Inglés |
Publicado: |
Cambridge :
Cambridge University Press
2014.
|
Colección: | CUP ebooks.
Cambridge texts in applied mathematics ; 50. |
Acceso en línea: | Conectar con la versión electrónica |
Ver en Universidad de Navarra: | https://innopac.unav.es/record=b45424214*spi |
Tabla de Contenidos:
- Machine generated contents note: Part I. Deterministic Differential Equations: 1. Linear analysis; 2. Galerkin approximation and finite elements; 3. Time-dependent differential equations; Part II. Stochastic Processes and Random Fields: 4. Probability theory; 5. Stochastic processes; 6. Stationary Gaussian processes; 7. Random fields; Part III. Stochastic Differential Equations: 8. Stochastic ordinary differential equations (SODEs); 9. Elliptic PDEs with random data; 10. Semilinear stochastic PDEs.