Nuclear physics with stable and radioactive ion beams Fisica nucleare con fasci di ioni stabili e radioattivi
Autor Corporativo: | |
---|---|
Otros Autores: | , , , |
Formato: | Libro electrónico |
Idioma: | Inglés |
Publicado: |
Amsterdam :
IOS Press : IOS Press
2019.
|
Colección: | EBSCO Academic eBook Collection Complete.
Proceedings of the International School of Physics Enrico Fermi ; Course 201. |
Acceso en línea: | Conectar con la versión electrónica |
Ver en Universidad de Navarra: | https://innopac.unav.es/record=b44368902*spi |
Tabla de Contenidos:
- Intro; Title Page; Contents; Preface; Course group shot; Recent developments in shell model studies of atomic nuclei; 1. Introduction; 2. Basic points of the shell model; 3. Computational aspect-Monte Carlo Shell Model; 4. Hamiltonians; 5. Emerging concepts on many-body dynamics; 6. Shell evolution and monopole interaction; 6.1. Monopole interaction; 6.2. Effect of monopole interaction; 7. Shell evolution due to nuclear forces; 7.1. Type-I shell evolution; 7.2. Shell evolution due to tensor force; 8. Nuclear shape; 8.1. Nuclear shapes and quantum phase transition.
- 8.2. Quantum phase transition in Zr isotopes8.3. Quantum self-organization; 9. Summary and perspectives; Algebraic models of quantum many-body systems: The algebraic cluster model; 1. Introduction; 2. Cluster structure of light nuclei; 3. The algebraic cluster model; 3.1. Classification of states; 3.1.1. Dumbbell configuration, k = 2. Z2 symmetry; 3.1.2. Equilateral-triangle configuration, k = 3. D3h symmetry; 3.1.3. Tetrahedral configuration, k = 4. Td symmetry; 3.2. Energy formulas; 3.2.1. Dumbbell configuration. Z2 symmetry; 3.2.2. Equilateral-triangle configuration. D3h symmetry.
- 3.2.3. Tetrahedral configuration. Td symmetry3.3. Form factors and transition probabilities; 3.3.1. Dumbbell configuration. Z2 symmetry; 3.3.2. Equilateral-triangle configuration. D3h symmetry; 3.3.3. Tetrahedral configuration. Td symmetry; 3.4. Cluster densities; 3.4.1. Dumbbell configuration. Z2 symmetry; 3.4.2. Equilateral-triangle configuration. D3h symmetry; 3.4.3. Tetrahedral configuration. Td symmetry; 3.5. Moments of inertia and radii; 3.5.1. Dumbbell configuration. Z2 symmetry; 3.5.2. Equilateral-triangle configuration, k = 3. D3h symmetry.
- 3.5.3. Tetrahedral configuration, k = 4. Td symmetry4. Evidence for cluster structures; 4.1. Energies; 4.1.1. Dumbbell configuration. Z2 symmetry; 4.1.2. Equilateral-triangle configuration. D3h symmetry; 4.1.3. Tetrahedral configuration. Td symmetry; 4.2. Electromagnetic transition rates; 4.2.1. Dumbbell configuration. Z2 symmetry; 4.2.2. Equilateral-triangle configuration. D3h symmetry; 4.2.3. Tetrahedral configuration. Td symmetry; 4.3. Form factors; 4.3.1. Dumbbell configuration. Z2 symmetry; 4.3.2. Equilateral-triangle configuration. D3h symmetry.
- 4.3.3. Tetrahedral configuration. Td symmetry5. Breaking of the cluster structure. Non-cluster states; 6. Softness and higher-order corrections; 6.1. Dumbbell configuration. Z symmetry; 6.2. Equilateral-triangle configuration. D3h symmetry; 6.3. Tetrahedral configuration. Td symmetry; 7. Other geometric configurations; 8. Conclusions; Clustering in light neutron-rich nuclei; 1. Introduction; 2. Antisymmetrized molecular dynamics; 2.1. AMD wave function; 2.2. Cluster correlation; 3. Clustering in neutron-rich Be; 4. Clustering in 12C and neighboring nuclei; 4.1. Cluster structures of 12C.