Handbook of regression analysis with applications in R

"Building on the Handbook of Regression Analysis and Regression Analysis by Example, the authors' thorough treatments of "classic" regression analysis, this book covers two important and more advanced topics of time-to-event survival data and longitudinal and clustered data. Furt...

Descripción completa

Detalles Bibliográficos
Otros Autores: Chatterjee, Samprit, 1938- autor (autor), Simonoff, Jeffrey S., autor
Formato: Libro electrónico
Idioma:Inglés
Publicado: Hoboken, NJ : Wiley 2020.
Edición:2nd ed
Colección:Wiley ebooks.
Wiley series in probability and statistics.
Acceso en línea:Conectar con la versión electrónica
Ver en Universidad de Navarra:https://innopac.unav.es/record=b43739817*spi
Tabla de Contenidos:
  • <P>Preface to the Second Edition xiii</p> <p>Preface to the First Edition xvii</p> <p><b>Part I The Multiple Linear Regression Model</b></p> <p><b>1 Multiple Linear Regression 3</b></p> <p>1.1 Introduction 3</p> <p>1.2 Concepts and Background Material 4</p> <p>1.2.1 The Linear Regression Model 4</p> <p>1.2.2 Estimation Using Least Squares 5</p> <p>1.2.3 Assumptions 8</p> <p>1.3 Methodology 9</p> <p>1.3.1 Interpreting Regression Coefficients 9</p> <p>1.3.2 Measuring the Strength of the Regression Relationship 11</p> <p>1.3.3 Hypothesis Tests and Confidence Intervals for _ 12</p> <p>1.3.4 Fitted Values and Predictions 14</p> <p>1.3.5 Checking Assumptions Using Residual Plots 15</p> <p>1.4 Example
  • Estimating Home Prices 16</p> <p>1.5 Summary 19</p> <p><b>2 Model Building 23</b></p> <p>2.1 Introduction 23</p> <p>2.2 Concepts and Background Material 24</p> <p>2.2.1 Using Hypothesis Tests to Compare Models 24</p> <p>2.2.2 Collinearity 26</p> <p>2.3 Methodology 29</p> <p>2.3.1 Model Selection 29</p> <p>2.3.2 Example-Estimating Home Prices (continued) 31</p> <p>2.4 Indicator Variables and Modeling Interactions 39</p> <p>2.4.1 Example-Electronic Voting and the 2004 Presidential Election 41</p> <p>2.5 Summary 46</p> <p><b>Part II Addressing Violations of Assumptions</b></p> <p><b>3 Diagnostics for Unusual Observations 53</b></p> <p>3.1 Introduction 53</p> <p>3.2 Concepts and Background Material 54</p> <p>3.3 Methodology 56</p> <p>3.3.1 Residuals and Outliers 56</p> <p>3.3.2 Leverage Points 57</p> <p>3.3.3 Influential Points and Cook's Distance 58</p> <p>3.4 Example
  • Estimating Home Prices (continued) 60</p> <p>3.5 Summary 64</p> <p><b>4 Transformations and Linearizable Models 67</b></p> <p>4.1 Introduction 67</p> <p>4.2 Concepts and Background Material: The Log-Log Model 69</p> <p>4.3 Concepts and Background Material: Semilog Models 69</p> <p>4.3.1 Logged Response Variable 70</p> <p>4.3.2 Logged Predictor Variable 70</p> <p>4.4 Example
  • Predicting Movie Grosses After One Week 71</p> <p>4.5 Summary 78</p> <p><b>5 Time Series Data and Autocorrelation 81</b></p> <p>5.1 Introduction 81</p> <p>5.2 Concepts and Background Material 83</p> <p>5.3 Methodology: Identifying Autocorrelation 85</p> <p>5.3.1 The Durbin-Watson Statistic 86</p> <p>5.3.2 The Autocorrelation Function (ACF) 87</p> <p>5.3.3 Residual Plots and the Runs Test 87</p> <p>5.4 Methodology: Addressing Autocorrelation 88</p> <p>5.4.1 Detrending and Deseasonalizing 88</p> <p>5.4.2 Example
  • e-Commerce Retail Sales 89</p> <p>5.4.3 Lagging and Differencing 95</p> <p>5.4.4 Example
  • Stock Indexes 96</p> <p>5.4.5 Generalized Least Squares (GLS): The Cochrane- Orcutt Procedure 102</p> <p>5.4.6 Example
  • Time Intervals Between Old Faithful Geyser Eruptions 104</p> <p>5.5 Summary 107</p> <p><b>Part III Categorical Predictors</b></p> <p><b>6 Analysis of Variance 113</b></p> <p>6.1 Introduction 113</p> <p>6.2 Concepts and Background Material 114</p> <p>6.2.1 One-Way ANOVA 114</p> <p>6.2.2 Two-Way ANOVA 115</p> <p>6.3 Methodology 117</p> <p>6.3.1 Codings for Categorical Predictors 117</p> <p>6.3.2 Multiple Comparisons 122</p> <p>6.3.3 Levene's Test and Weighted Least Squares 124</p> <p>6.3.4 Membership in Multiple Groups 127</p> <p>6.4 Example
  • DVD Sales of Movies 129</p> <p>6.5 Higher-Way ANOVA 134</p> <p>6.6 Summary 136</p> <p><b>7 Analysis of Covariance 139</b></p> <p>7.1 Introduction 139</p> <p>7.2 Methodology 139</p> <p>7.2.1 Constant Shift Models 139</p> <p>7.2.2 Varying Slope Models 141</p> <p>7.3 Example
  • International Grosses of Movies 141</p> <p>7.4 Summary 145</p> <p><b>Part IV Non-Gaussian Regression Models</b></p> <p><b>8 Logistic Regression 149</b></p> <p>8.1 Introduction 149</p> <p>8.2 Concepts and Background Material 151</p> <p>8.2.1 The Logit Response Function 151</p> <p>8.2.2 Bernoulli and Binomial Random Variables 152</p> <p>8.2.3 Prospective and Retrospective Designs 153</p> <p>8.3 Methodology 156</p> <p>8.3.1 Maximum Likelihood Estimation 156</p> <p>8.3.2 Inference, Model Comparison, and Model Selection 157</p> <p>8.3.3 Goodness-of-Fit 159</p> <p>8.3.4 Measures of Association and Classification Accuracy 161</p> <p>8.3.5 Diagnostics 163</p> <p>8.4 Example
  • Smoking and Mortality 163</p> <p>8.5 Example
  • Modeling Bankruptcy 167</p> <p>8.6 Summary 173</p> <p><b>9 Multinomial Regression 177</b></p> <p>9.1 Introduction 177</p> <p>9.2 Concepts and Background Material 178</p> <p>9.2.1 Nominal Response Variable 178</p> <p>9.2.2 Ordinal Response Variable 180</p> <p>9.3 Methodology 182</p> <p>9.3.1 Estimation 182</p> <p>9.3.2 Inference, Model Comparisons, and Strength of Fit 183</p> <p>9.3.3 Lack of Fit and Violations of Assumptions 184</p> <p>9.4 Example
  • City Bond Ratings 185</p> <p>9.5 Summary 189</p> <p><b>10 Count Regression 191</b></p> <p>10.1 Introduction 191</p> <p>10.2 Concepts and Background Material 192</p> <p>10.2.1 The Poisson Random Variable 192</p> <p>10.2.2 Generalized Linear Models 193</p> <p>10.3 Methodology 194</p> <p>10.3.1 Estimation and Inference 194</p> <p>10.3.2 Offsets 195</p> <p>10.4 Overdispersion and Negative Binomial Regression 196</p> <p>10.4.1 Quasi-likelihood 197</p> <p>10.4.2 Negative Binomial Regression 198</p> <p>10.5 Example
  • Unprovoked Shark Attacks in Florida 198</p> <p>10.6 Other Count Regression Models 205</p> <p>10.7 Poisson Regression and Weighted Least Squares 209</p> <p>10.7.1 Example-International Grosses of Movies (continued) 210</p> <p>10.8 Summary 212</p> <p><b>11 Models for Time-to-Event (Survival) Data 215</b></p> <p>11.1 Introduction 216</p> <p>11.2 Concepts and Background Material 217</p> <p>11.2.1 The Nature of Survival Data 217</p> <p>11.2.2 Accelerated Failure Time Models 218</p> <p>11.2.3 The Proportional Hazards Model 219</p> <p>11.3 Methodology 220</p> <p>11.3.1 The Kaplan-Meier Estimator and the Log-Rank Test 220</p> <p>11.3.2 Parametric (Likelihood) Estimation 225</p> <p>11.3.3 Semiparametric (Partial Likelihood) Estimation 227</p> <p>11.3.4 The Buckley-James Estimator 229</p> <p>11.4 Example-The Survival of Broadway Shows (continued) 230</p> <p>11.5 LTRC Data and Time-Varying Covariates 238</p> <p>11.5.1 Left-Truncated/Right-Censored Data 238</p> <p>11.5.2 Example-The Survival of Broadway Shows (continued) 239</p> <p>11.5.3 Time-Varying Covariates 240</p> <p>11.5.4 Example
  • Female Heads of Government 241</p> <p>11.6 Summary 244</p> <p><b>Part V Other Regression Models</b></p> <p><b>12 Nonlinear Regression 249</b></p> <p>12.1 Introduction 249</p> <p>12.2 Concepts and Background Material 250</p> <p>12.3 Methodology 252</p> <p>12.3.1 Nonlinear Least Squares Estimation 252</p> <p>12.3.2 Inference for Nonlinear Regression Models 253</p> <p>12.4 Example
  • Michaelis-Menten Enzyme Kinetics 254</p> <p>12.5 Summary 259</p> <p><b>13 Models for Longitudinal and Nested Data 261</b></p> <p>13.1 Introduction 261</p> <p>13.2 Concepts and Background Material 263</p> <p>13.2.1 Nested Data and ANOVA 263</p> <p>13.2.2 Longitudinal Data and Time Series 264</p> <p>13.2.3 Fixed Effects Versus Random Effects 265</p> <p>13.3 Methodology 266</p> <p>13.3.1 The Linear Mixed Effects Model 266</p> <p>13.3.2 The Generalized Linear Mixed Effects Model 268</p> <p>13.3.3 Generalized Estimating Equations 269</p> <p>13.3.4 Nonlinear Mixed Effects Models 269</p> <p>13.4 Example
  • Tumor Growth in a Cancer Study 270</p> <p>13.5 Example-Unprovoked Shark Attacks in theUnited States 276</p> <p>13.6 Summary 282</p> <p><b>14 Regularization Methods and Sparse Models 285</b></p> <p>14.1 Introduction 285</p> <p>14.2 Concepts and Background Material 286</p> <p>14.2.1 The Bias-Variance Tradeoff 286</p> <p>14.2.2 Large Numbers of Predictors and Sparsity 287</p>