Can Mathematics Be Proved Consistent? Gödel's Shorthand Notes & Lectures on Incompleteness
Kurt Gödel (1906-1978) shook the mathematical world in 1931 by a result that has become an icon of 20th century science: The search for rigour in proving mathematical theorems had led to the formalization of mathematical proofs, to the extent that such proving could be reduced to the application of...
Autor principal: | |
---|---|
Autor Corporativo: | |
Formato: | Libro electrónico |
Idioma: | Inglés |
Publicado: |
Cham :
Springer International Publishing
2020.
|
Edición: | 1st ed |
Colección: | Springer eBooks.
Sources and Studies in the History of Mathematics and Physical Sciences ; |
Acceso en línea: | Conectar con la versión electrónica |
Ver en Universidad de Navarra: | https://innopac.unav.es/record=b43269874*spi |
Tabla de Contenidos:
- I. Gödel's Steps Toward Incompleteness
- II. The Saved Sources on Incompleteness
- III. The Shorthand Notebooks
- IV. The Typewritten Manuscripts
- V. Lectures and Seminars on Incompleteness
- Index
- References.