Whole-angle MEMs gyroscopes challenges and opportunities

"Coriolis Vibratory Gyroscopes (CVGs) can be divided into two broad categories based on the gyroscope's mechanical element: (Type 1) degenerate mode gyroscopes, which have x-y symmetry, and (Type 2) non-degenerate mode gyroscopes, which are designed intentionally to be asymmetric in x and...

Descripción completa

Detalles Bibliográficos
Otros Autores: Senkal, Doruk, 1984- autor (autor), Shkel, Andrei, autor
Formato: Libro electrónico
Idioma:Inglés
Publicado: Hoboken, New Jersey : Piscataway, NJ : John Wiley & Sons, Inc. ; IEEE Press [2020]
Edición:1st ed
Colección:Wiley ebooks.
IEEE Press series on sensors.
Acceso en línea:Conectar con la versión electrónica
Ver en Universidad de Navarra:https://innopac.unav.es/record=b42826007*spi
Tabla de Contenidos:
  • Cover
  • Title Page
  • Copyright Page
  • Contents
  • List of Abbreviations
  • Preface
  • About the Authors
  • Part I Fundamentals of Whole-Angle Gyroscopes
  • Chapter 1 Introduction
  • 1.1 Types of Coriolis Vibratory Gyroscopes
  • 1.1.1 Nondegenerate Mode Gyroscopes
  • 1.1.2 Degenerate Mode Gyroscopes
  • 1.2 Generalized CVG Errors
  • 1.2.1 Scale Factor Errors
  • 1.2.2 Bias Errors
  • 1.2.3 Noise Processes
  • 1.2.3.1 Allan Variance
  • 1.3 Overview
  • Chapter 2 Dynamics
  • 2.1 Introduction to Whole-Angle Gyroscopes
  • 2.2 Foucault Pendulum Analogy
  • 2.2.1 Damping and Q-factor.
  • 2.2.1.1 Viscous Damping
  • 2.2.1.2 Anchor Losses
  • 2.2.1.3 Material Losses
  • 2.2.1.4 Surface Losses
  • 2.2.1.5 Mode Coupling Losses
  • 2.2.1.6 Additional Dissipation Mechanisms
  • 2.2.2 Principal Axes of Elasticity and Damping
  • 2.3 Canonical Variables
  • 2.4 Effect of Structural Imperfections
  • 2.5 Challenges of Whole-Angle Gyroscopes
  • Chapter 3 Control Strategies
  • 3.1 Quadrature and Coriolis Duality
  • 3.2 Rate Gyroscope Mechanization
  • 3.2.1 Open-loop Mechanization
  • 3.2.1.1 Drive Mode Oscillator
  • 3.2.1.2 Amplitude Gain Control
  • 3.2.1.3 Phase Locked Loop/Demodulation.
  • 3.2.1.4 Quadrature Cancellation
  • 3.2.2 Force-to-rebalance Mechanization
  • 3.2.2.1 Force-to-rebalance Loop
  • 3.2.2.2 Quadrature Null Loop
  • 3.3 Whole-Angle Mechanization
  • 3.3.1 Control System Overview
  • 3.3.2 Amplitude Gain Control
  • 3.3.2.1 Vector Drive
  • 3.3.2.2 Parametric Drive
  • 3.3.3 Quadrature Null Loop
  • 3.3.3.1 AC Quadrature Null
  • 3.3.3.2 DC Quadrature Null
  • 3.3.4 Force-to-rebalance and Virtual Carouseling
  • 3.4 Conclusions
  • Part II 2-D Micro-Machined Whole-Angle Gyroscope Architectures
  • Chapter 4 Overview of 2-D Micro-Machined Whole-Angle Gyroscopes.
  • 4.1 2-D Micro-Machined Whole-Angle Gyroscope Architectures
  • 4.1.1 Lumped Mass Systems
  • 4.1.2 Ring/Disk Systems
  • 4.1.2.1 Ring Gyroscopes
  • 4.1.2.2 Concentric Ring Systems
  • 4.1.2.3 Disk Gyroscopes
  • 4.2 2-D Micro-Machining Processes
  • 4.2.1 Traditional Silicon MEMS Process
  • 4.2.2 Integrated MEMS/CMOS Fabrication Process
  • 4.2.3 Epitaxial Silicon Encapsulation Process
  • Chapter 5 Example 2-D Micro-Machined Whole-Angle Gyroscopes
  • 5.1 A Distributed Mass MEMS Gyroscope
  • Toroidal Ring Gyroscope
  • 5.1.1 Architecture
  • 5.1.1.1 Electrode Architecture.
  • 5.1.2 Experimental Demonstration of the Concept
  • 5.1.2.1 Fabrication
  • 5.1.2.2 Experimental Setup
  • 5.1.2.3 Mechanical Characterization
  • 5.1.2.4 Rate Gyroscope Operation
  • 5.1.2.5 Comparison of Vector Drive and Parametric Drive
  • 5.2 A Lumped Mass MEMS Gyroscope
  • Dual Foucault Pendulum Gyroscope
  • 5.2.1 Architecture
  • 5.2.1.1 Electrode Architecture
  • 5.2.2 Experimental Demonstration of the Concept
  • 5.2.2.1 Fabrication
  • 5.2.2.2 Experimental Setup
  • 5.2.2.3 Mechanical Characterization
  • 5.2.2.4 Rate Gyroscope Operation
  • 5.2.2.5 Parameter Identification.