Principles of inorganic materials design

"With its proven concept, this textbook introduces topics relevant to the design of new materials. It covers a wide range of topics in the area of inorganic materials structure/property relations and materials behavior across length scales. New to this third edition are chapters specifically on...

Descripción completa

Detalles Bibliográficos
Otros Autores: Lalena, John N. autor (autor), Cleary, David A., autor, Duparc, Olivier B. M. Hardouin, autor
Formato: Libro electrónico
Idioma:Inglés
Publicado: Hoboken, NJ, USA : Wiley 2020.
Edición:3rd ed
Colección:Wiley ebooks.
Acceso en línea:Conectar con la versión electrónica
Ver en Universidad de Navarra:https://innopac.unav.es/record=b42825350*spi
Tabla de Contenidos:
  • Cover
  • Title Page
  • Copyright Page
  • Contents
  • Foreword to Second Edition
  • Foreword to First Edition
  • Preface to Third Edition
  • Preface to Second Edition
  • Preface to First Edition
  • Acronyms
  • Chapter 1 Crystallographic Considerations
  • 1.1 Degrees of Crystallinity
  • 1.1.1 Monocrystalline Solids
  • 1.1.2 Quasicrystalline Solids
  • 1.1.3 Polycrystalline Solids
  • 1.1.4 Semicrystalline Solids
  • 1.1.5 Amorphous Solids
  • 1.2 Basic Crystallography
  • 1.2.1 Crystal Geometry
  • 1.3 Single-Crystal Morphology and Its Relationship to Lattice Symmetry.
  • 1.4 Twinned Crystals, Grain Boundaries, and Bicrystallography
  • 1.4.1 Twinned Crystals and Twinning
  • 1.4.2 Crystallographic Orientation Relationships in Bicrystals
  • 1.5 Amorphous Solids and Glasses
  • 1.5.1 Oxide Glasses
  • 1.5.2 Metallic Glasses and Metal-Organic Framework Glasses
  • 1.5.3 Aerogels
  • Practice Problems
  • References
  • Chapter 2 Microstructural Considerations
  • 2.1 Materials Length Scales
  • 2.1.1 Experimental Resolution of Material Features
  • 2.2 Grain Boundaries in Polycrystalline Materials
  • 2.2.1 Grain Boundary Orientations.
  • 2.2.2 Dislocation Model of Low Angle Grain Boundaries
  • 2.2.3 Grain Boundary Energy
  • 2.2.4 Special Types of L̀̀ow-Energy ́́Boundaries
  • 2.2.5 Grain Boundary Dynamics
  • 2.2.6 Representing Orientation Distributions in Polycrystalline Aggregates
  • 2.3 Materials Processing and Microstructure
  • 2.3.1 Conventional Solidification
  • 2.3.2 Deformation Processing
  • 2.3.3 Consolidation Processing
  • 2.3.4 Thin-Film Formation
  • 2.4 Microstructure and Materials Properties
  • 2.4.1 Mechanical Properties
  • 2.4.2 Transport Properties
  • 2.4.3 Magnetic and Dielectric Properties.
  • 2.4.4 Chemical Properties
  • 2.5 Microstructure Control and Design
  • Practice Problems
  • References
  • Chapter 3 Crystal Structures and Binding Forces
  • 3.1 Structure Description Methods
  • 3.1.1 Close Packing
  • 3.1.2 Polyhedra
  • 3.1.3 The (Primitive) Unit Cell
  • 3.1.4 Space Groups and Wyckoff Positions
  • 3.1.5 Strukturbericht Symbols
  • 3.1.6 Pearson Symbols
  • 3.2 Cohesive Forces in Solids
  • 3.2.1 Ionic Bonding
  • 3.2.2 Covalent Bonding
  • 3.2.3 Dative Bonds
  • 3.2.4 Metallic Bonding
  • 3.2.5 Atoms and Bonds as Electron Charge Density
  • 3.3 Chemical Potential Energy.
  • 3.3.1 Lattice Energy for Ionic Crystals
  • 3.3.2 The Born-Haber Cycle
  • 3.3.3 Goldschmidt's Rules and Pauling's Rules
  • 3.3.4 Total Energy
  • 3.3.5 Electronic Origin of Coordination Polyhedra in Covalent Crystals
  • 3.4 Common Structure Types
  • 3.4.1 Iono-covalent Solids
  • 3.4.2 Metal Carbides, Silicides, Borides, Hydrides, and Nitrides
  • 3.4.3 Metallic Alloys and Intermetallic Compounds
  • 3.5 Structural Disturbances
  • 3.5.1 Intrinsic Point Defects
  • 3.5.2 Extrinsic Point Defects
  • 3.5.3 Structural Distortions
  • 3.5.4 Bond Valence Sum Calculations.