Principles of inorganic materials design
"With its proven concept, this textbook introduces topics relevant to the design of new materials. It covers a wide range of topics in the area of inorganic materials structure/property relations and materials behavior across length scales. New to this third edition are chapters specifically on...
Otros Autores: | , , |
---|---|
Formato: | Libro electrónico |
Idioma: | Inglés |
Publicado: |
Hoboken, NJ, USA :
Wiley
2020.
|
Edición: | 3rd ed |
Colección: | Wiley ebooks.
|
Acceso en línea: | Conectar con la versión electrónica |
Ver en Universidad de Navarra: | https://innopac.unav.es/record=b42825350*spi |
Tabla de Contenidos:
- Cover
- Title Page
- Copyright Page
- Contents
- Foreword to Second Edition
- Foreword to First Edition
- Preface to Third Edition
- Preface to Second Edition
- Preface to First Edition
- Acronyms
- Chapter 1 Crystallographic Considerations
- 1.1 Degrees of Crystallinity
- 1.1.1 Monocrystalline Solids
- 1.1.2 Quasicrystalline Solids
- 1.1.3 Polycrystalline Solids
- 1.1.4 Semicrystalline Solids
- 1.1.5 Amorphous Solids
- 1.2 Basic Crystallography
- 1.2.1 Crystal Geometry
- 1.3 Single-Crystal Morphology and Its Relationship to Lattice Symmetry.
- 1.4 Twinned Crystals, Grain Boundaries, and Bicrystallography
- 1.4.1 Twinned Crystals and Twinning
- 1.4.2 Crystallographic Orientation Relationships in Bicrystals
- 1.5 Amorphous Solids and Glasses
- 1.5.1 Oxide Glasses
- 1.5.2 Metallic Glasses and Metal-Organic Framework Glasses
- 1.5.3 Aerogels
- Practice Problems
- References
- Chapter 2 Microstructural Considerations
- 2.1 Materials Length Scales
- 2.1.1 Experimental Resolution of Material Features
- 2.2 Grain Boundaries in Polycrystalline Materials
- 2.2.1 Grain Boundary Orientations.
- 2.2.2 Dislocation Model of Low Angle Grain Boundaries
- 2.2.3 Grain Boundary Energy
- 2.2.4 Special Types of L̀̀ow-Energy ́́Boundaries
- 2.2.5 Grain Boundary Dynamics
- 2.2.6 Representing Orientation Distributions in Polycrystalline Aggregates
- 2.3 Materials Processing and Microstructure
- 2.3.1 Conventional Solidification
- 2.3.2 Deformation Processing
- 2.3.3 Consolidation Processing
- 2.3.4 Thin-Film Formation
- 2.4 Microstructure and Materials Properties
- 2.4.1 Mechanical Properties
- 2.4.2 Transport Properties
- 2.4.3 Magnetic and Dielectric Properties.
- 2.4.4 Chemical Properties
- 2.5 Microstructure Control and Design
- Practice Problems
- References
- Chapter 3 Crystal Structures and Binding Forces
- 3.1 Structure Description Methods
- 3.1.1 Close Packing
- 3.1.2 Polyhedra
- 3.1.3 The (Primitive) Unit Cell
- 3.1.4 Space Groups and Wyckoff Positions
- 3.1.5 Strukturbericht Symbols
- 3.1.6 Pearson Symbols
- 3.2 Cohesive Forces in Solids
- 3.2.1 Ionic Bonding
- 3.2.2 Covalent Bonding
- 3.2.3 Dative Bonds
- 3.2.4 Metallic Bonding
- 3.2.5 Atoms and Bonds as Electron Charge Density
- 3.3 Chemical Potential Energy.
- 3.3.1 Lattice Energy for Ionic Crystals
- 3.3.2 The Born-Haber Cycle
- 3.3.3 Goldschmidt's Rules and Pauling's Rules
- 3.3.4 Total Energy
- 3.3.5 Electronic Origin of Coordination Polyhedra in Covalent Crystals
- 3.4 Common Structure Types
- 3.4.1 Iono-covalent Solids
- 3.4.2 Metal Carbides, Silicides, Borides, Hydrides, and Nitrides
- 3.4.3 Metallic Alloys and Intermetallic Compounds
- 3.5 Structural Disturbances
- 3.5.1 Intrinsic Point Defects
- 3.5.2 Extrinsic Point Defects
- 3.5.3 Structural Distortions
- 3.5.4 Bond Valence Sum Calculations.