Data mining practical machine learning tools and techniques

Data Mining: Practical Machine Learning Tools and Techniques, Fourth Edition, offers a thorough grounding in machine learning concepts, along with practical advice on applying these tools and techniques in real-world data mining situations. This highly anticipated fourth edition of the most acclaime...

Descripción completa

Detalles Bibliográficos
Otros Autores: Witten, Ian H., autor (autor), Frank, Eibe, autor, Hall, Mark Andrew, autor, Pal, Christopher J., autor
Formato: Libro electrónico
Idioma:Inglés
Publicado: Cambridge, MA : Morgan Kaufmann Publisher [2017]
Edición:4th ed
Colección:Science Direct e-books.
Acceso en línea:Conectar con la versión electrónica
Ver en Universidad de Navarra:https://innopac.unav.es/record=b41091188*spi
Tabla de Contenidos:
  • Part I. Introduction to data mining. Chapter 1. What's it all about?
  • Chapter 2. Input: concepts, instances, attributes
  • Chapter 3. Output: knowledge representation
  • Chapter 4. Algorithms: the basic methods
  • Chapter 5. Credibility: evaluating what's been learned
  • Part II. More advanced machine learning schemes. Chapter 6. Trees and rules
  • Chapter 7. Extending instance-based and linear models
  • Chapter 8. Data transformations
  • Chapter 9. Probabilistic methods
  • Chapter 10. Deep learning
  • Chapter 11. Beyond supervised and unsupervised learning
  • Chapter 12. Ensemble learning
  • Chapter 13. Moving on: applications and beyond
  • Appendix A. Theoretical foundations
  • Appendix B. The WEKA workbench.