Application of graph rewriting to natural language processing
The paradigm of Graph Rewriting is used very little in the field of Natural Language Processing. But graphs are a natural way of representing the deep syntax and the semantics of natural languages. Deep syntax is an abstraction of syntactic dependencies towards semantics in the form of graphs and th...
Otros Autores: | , , |
---|---|
Formato: | Libro electrónico |
Idioma: | Inglés |
Publicado: |
London : Hoboken, NJ :
ISTE Ltd. ; John Wiley & Sons, Inc
2018.
|
Colección: | Wiley ebooks.
Cognitive science series. Logic, linguistics and computer science set ; 1. |
Acceso en línea: | Conectar con la versión electrónica |
Ver en Universidad de Navarra: | https://innopac.unav.es/record=b40631953*spi |
Tabla de Contenidos:
- Cover; Half-Title Page; Title Page; Copyright Page; Contents; Introduction; 1. Programming with Graphs; 1.1. Creating a graph; 1.2. Feature structures; 1.3. Information searches; 1.3.1. Access to nodes; 1.3.2. Extracting edges; 1.4. Recreating an order; 1.5. Using patterns with the GREW library; 1.5.1. Pattern syntax; 1.5.2. Common pitfalls; 1.6. Graph rewriting; 1.6.1. Commands; 1.6.2. From rules to strategies; 1.6.3. Using lexicons; 1.6.4. Packages; 1.6.5. Common pitfalls; 2. Dependency Syntax: Surface Structure and Deep Structure; 2.1. Dependencies versus constituents.
- 2.2. Surface syntax: different types of syntactic dependency2.2.1. Lexical word arguments; 2.2.2. Modifiers; 2.2.3. Multiword expressions; 2.2.4. Coordination; 2.2.5. Direction of dependencies between functional and lexical words; 2.3. Deep syntax; 2.3.1. Example; 2.3.2. Subjects of infinitives, participles, coordinated verbs and adjectives; 2.3.3. Neutralization of diatheses; 2.3.4. Abstraction of focus and topicalization procedures; 2.3.5. Deletion of functional words; 2.3.6. Coordination in deep syntax; 3. Graph Rewriting and Transformation of Syntactic Annotations in a Corpus.
- 3.1. Pattern matching in syntactically annotated corpora3.1.1. Corpus correction; 3.1.2. Searching for linguistic examples in a corpus; 3.2. From surface syntax to deep syntax; 3.2.1. Main steps in the SSQ_to_DSQ transformation; 3.2.2. Lessons in good practice; 3.2.3. The UD_to_AUD transformation system; 3.2.4. Evaluation of the SSQ_to_DSQ and UD_to_AUD systems; 3.3. Conversion between surface syntax formats; 3.3.1. Differences between the SSQ and UD annotation schemes; 3.3.2. The SSQ to UD format conversion system; 3.3.3. The UD to SSQ format conversion system.
- 4. From Logic to Graphs for Semantic Representation4.1. First order logic; 4.1.1. Propositional logic; 4.1.2. Formula syntax in FOL; 4.1.3. Formula semantics in FOL; 4.2. Abstract meaning representation (AMR); 4.2.1. General overview of AMR; 4.2.2. Examples of phenomena modeled using AMR; 4.3. Minimal recursion semantics, MRS; 4.3.1. Relations between quantifier scopes; 4.3.2. Why use an underspecified semantic representation?; 4.3.3. The RMRS formalism; 4.3.4. Examples of phenomenon modeling in MRS; 4.3.5. From RMRS to DMRS.
- 5. Application of Graph Rewriting to Semantic Annotation in a Corpus5.1. Main stages in the transformation process; 5.1.1. Uniformization of deep syntax; 5.1.2. Determination of nodes in the semantic graph; 5.1.3. Central arguments of predicates; 5.1.4. Non-core arguments of predicates; 5.1.5. Final cleaning; 5.2. Limitations of the current system; 5.3. Lessons in good practice; 5.3.1. Decomposing packages; 5.3.2. Ordering packages; 5.4. The DSQ_to_DMRS conversion system; 5.4.1. Modifiers; 5.4.2. Determiners; 6. Parsing Using Graph Rewriting; 6.1. The Cocke-Kasami-Younger parsing strategy.