Wideband RF technologies and antennas in microwave frequencies
"This book presents applications of Wide Band RF Technologies and Antennas. The author begins by discussing electromagnetic theory for RF designers. The book covers electromagnetic theory and microwave and mm wave RF technologies. The author examines MIC, MMIC, MEMS, and LTCC technologies. The...
Autor principal: | |
---|---|
Formato: | Libro electrónico |
Idioma: | Inglés |
Publicado: |
Hoboken, New Jersey :
John Wiley & Sons, Inc
2016.
|
Colección: | Wiley ebooks.
|
Acceso en línea: | Conectar con la versión electrónica |
Ver en Universidad de Navarra: | https://innopac.unav.es/record=b4061198x*spi |
Tabla de Contenidos:
- Intro
- Title Page
- Copyright
- Contents
- Acknowledgments
- Author Biography
- Preface
- 1 Electromagnetic Wave Propagation and Applications
- 2 ELECTROMAGNETIC THEORY AND TRANSMISSION LINES FOR RF DESIGNERS
- 3 BASIC ANTENNAS FOR COMMUNICATION SYSTEMS
- 4 MIC AND MMIC MICROWAVE AND MILLIMETER WAVE TECHNOLOGIES
- 5 PRINTED ANTENNAS FOR WIRELESS COMMUNICATION SYSTEMS
- 6 MIC AND MMIC MILLIMETER-WAVE RECEIVING CHANNEL MODULES
- 7 INTEGRATED OUTDOOR UNIT FOR MILLIMETER-WAVE SATELLITE COMMUNICATION APPLICATIONS
- 8 MIC AND MMIC INTEGRATED RF HEADS
- 9 MIC AND MMIC COMPONENTS AND MODULES DESIGN
- 10 MICROELECTROMECHANICAL SYSTEMS (MEMS) TECHNOLOGY
- 11 LOW-TEMPERATURE COFIRED CERAMIC (LTCC) TECHNOLOGY
- 12 ADVANCED ANTENNA TECHNOLOGIES FOR COMMUNICATION SYSTEM
- 13 Wearable Communication and Medical Systems
- 14 RF Measurements
- Index
- EULA
- REFERENCES
- 13.8 434MHz Receiving Channel for Communication andMedical Systems
- 13.9 Conclusions
- References
- 14.14 Antenna Range Setup
- References
- 14.5 Transmission Measurements
- 14.6 Output Power and Linearity Measurements
- 14.8 Nonharmonic Spurious Measurements
- 14.10 IP2 Measurements
- 14.11 IP3 Measurements
- 14.12 Noise Figure Measurements
- 14.1 Introduction
- 14.2 Multiport Networks with N-PORTS
- 14.3 Scattering Matrix
- 14.4 S-Parameters Measurements
- 13.1 Wearable Antennas for Communication andMedical Applications
- 12.12 CONCLUSIONS
- REFERENCES
- 13.2 Dually Polarized Wearable 434 MHz PrintedAntenna
- 13.3 Loop Antenna with Ground Plane
- 13.4 Antenna S11 Variation as Function of Distance from Body
- 13.5 Wearable Antennas
- 13.6 Compact Dual-Polarized Printed Antenna
- 13.7 Compact Wearable RFID Antennas
- 12.1 NEW WIDEBAND WEARABLE METAMATERIAL ANTENNAS FOR COMMUNICATION APPLICATIONS
- 11.7 CAPACITOR AND INDUCTOR QUALITY (Q) FACTOR.
- 11.8 SUMMARY OF LTCC PROCESS ADVANTAGES AND LIMITATIONS
- 12.8 ANTIRADAR FRACTALS AND/OR MULTILEVEL CHAFF DISPERSERS
- 12.9 DEFINITION OF MULTILEVEL FRACTAL STRUCTURE
- 12.10 ADVANCED ANTENNA SYSTEM
- 12.11 APPLICATIONS OF FRACTAL PRINTED ANTENNAS
- 11.1 INTRODUCTION
- 11.2 LTCC AND HTCC TECHNOLOGY FEATURES
- 11.3 LTCC AND HTCC TECHNOLOGY PROCESS
- 11.4 DESIGN OF HIGH-PASS LTCC FILTERS
- 11.5 COMPARISON OF SINGLE-LAYER AND MULTILAYER MICROSTRIP CIRCUITS
- 11.6 LTCC MULTILAYER TECHNOLOGY DESIGN CONSIDERATIONS
- 12.2 STACKED PATCH ANTENNA LOADED WITH SRR
- 12.3 PATCH ANTENNA LOADED WITH SPLIT RING RESONATORS
- 12.4 METAMATERIAL ANTENNA CHARACTERISTICS IN VICINITY TO THE HUMAN BODY
- 12.5 METAMATERIAL WEARABLE ANTENNAS
- 12.6 WIDEBAND STACKED PATCH WITH SRR
- 12.7 FRACTAL PRINTED ANTENNAS
- 10.1 INTRODUCTION
- 9.7 CONCLUSIONS
- REFERENCES
- 10.3 W-BAND MEMS DETECTION ARRAY
- 10.4 ARRAY FABRICATION AND MEASUREMENT
- 10.5 MUTUAL COUPLING EFFECTS BETWEEN PIXELS
- 10.6 MEMS BOW-TIE DIPOLE WITH BOLOMETER
- 10.8 CONCLUSIONS
- REFERENCES
- 9.4 RF AMPLIFIERS
- 9.5 LINEARITY OF RF AMPLIFIERS AND ACTIVE DEVICES
- 9.6 WIDEBAND PHASED ARRAY DIRECTION FINDING SYSTEM
- REFERENCES
- 9.1 INTRODUCTION
- 9.3 POWER DIVIDERS AND COMBINERS
- REFERENCES
- 8.2 SUPER COMPACT X-BAND MONOPULSE TRANSCEIVER
- 8.1 INTEGRATED Ku-BAND AUTOMATIC TRACKING SYSTEM
- 7.8 KA-BAND INTEGRATED HIGH POWER AMPLIFIERS, SSPA, FOR VSAT SATELLITE COMMUNICATION GROUND TERMINAL
- 7.9 CONCLUSIONS
- REFERENCES
- 7.1 THE ODU DESCRIPTION
- 7.2 THE LOW NOISE UNIT: LNB
- 7.4 ISOLATION BETWEEN RECEIVING AND TRANSMITTING CHANNELS
- 6.4 FSU PERFORMANCE
- 7.6 THE ODU MECHANICAL PACKAGE
- 7.7 LOW NOISE AND LOW-COST K-BAND COMPACT RECEIVING CHANNEL FOR VSAT SATELLITE COMMUNICATION GROUND TERMINAL
- 6.6 FSU FABRICATION
- 6.7 CONCLUSIONS
- REFERENCES.
- 5.2 TWO LAYERS STACKED MICROSTRIP ANTENNAS
- 5.3 STACKED MONOPULSE Ku BAND PATCH ANTENNA
- 6.3 18-40 GHz Integrated Compact Switched Filter Bank Module
- 6.5 FSU DESIGN AND ANALYSIS
- 6.1 18-40 GHz COMPACT RF MODULES
- 5.5 WIRED LOOP ANTENNA
- 5.6 RADIATION PATTERN OF A LOOP ANTENNA NEAR A METAL SHEET
- 5.7 PLANAR INVERTED-F ANTENNA
- 5.1 PRINTED ANTENNAS
- 5.4 LOOP ANTENNAS
- REFERENCES
- 4.4 MONOLITHIC MICROWAVE INTEGRATED CIRCUITS
- 4.5 CONCLUSIONS
- REFERENCES
- 4.1 INTRODUCTION
- 4.2 MICROWAVE INTEGRATED CIRCUITS MODULES
- 3.6 ANTENNA ARRAYS FOR COMMUNICATION SYSTEMS
- 3.4 BASIC APERTURE ANTENNAS
- 3.5 HORN ANTENNAS
- 3.1 INTRODUCTION TO ANTENNAS
- 3.2 ANTENNA PARAMETERS
- 3.3 DIPOLE ANTENNA
- 2.7 MATERIALS
- 2.8 WAVEGUIDES
- 2.9 CIRCULAR WAVEGUIDE
- REFERENCES
- references
- 2.1 definitions
- 2.2 electromagnetic waves
- 1.10 Types of Radars
- 2.3 TRANSMISSION LINES
- 2.4 MATCHING TECHNIQUES
- 2.5 COAXIAL TRANSMISSION LINE
- 2.6 MICROSTRIP LINE
- 1.1 Electromagnetic Spectrum
- 1.2 Free-Space Propagation
- 1.3 Friis Transmission Formula
- 1.4 Link Budget Examples
- 1.5 Noise
- 1.6 Communication System Link Budget
- 1.7 Path Loss
- 1.9 Receivers: Definitions and Features
- 1.9.2 Receivers: Definitions
- 1.7.1 Free-Space Path Loss
- 1.8.1 Basic Receiver Sensitivity Calculation
- 1.6.1 Transmitter
- 1.3.1 Logarithmic Relations
- 2.6.1 Effective Dielectric Constant
- 2.6.2 Characteristic Impedance
- 2.6.4 Losses in Microstrip Line
- 2.5.1 Cutoff Frequency and Wavelength of Coax Cables
- 2.4.1 The Smith Chart Guidelines
- 2.4.3 Wideband Matching: Multisection Transformers
- 2.3.1 Waves in Transmission Lines
- 1.11.1 Transmitter
- 2.2.1 Maxwellś Equations
- 2.2.2 Gaussś Law for Electric Fields
- 2.2.6 Wave Equations
- 2.9.1 TE Waves in Circular Waveguide
- 2.9.2 TM Waves in Circular Waveguide.
- 2.8.1 TE Waves
- 2.8.2 TM Waves
- 3.3.1 Radiation from a Small Dipole
- 3.3.2 Dipole Radiation Pattern
- 3.3.4 Dipole H-Plane Radiation Pattern
- 3.3.5 Antenna Radiation Pattern
- 3.3.7 Antenna Impedance
- 3.5.1 E-Plane Sectoral Horn
- 3.5.2 H-Plane Sectoral Horn
- 3.4.1 The Parabolic Reflector Antenna
- 3.4.2 Reflector Directivity
- 3.4.3 Cassegrain Reflector
- 3.6.1 Introduction
- 3.6.2 Array Radiation Pattern
- 3.6.3 Broadside Array
- 3.6.4 End-Fire Array
- 3.6.6 Stacked Microstrip Antenna Arrays
- 3.6.7 Ka-band Microstrip Antenna Arrays
- 4.3.1 Introduction
- 4.3.2 Description of the Receiving Channel
- 4.3.4 Description of the Transmitting Channel
- 4.4.6 Generation of Microwave Signals in Microwave and mm Wave
- 4.4.7 MMIC Circuit Examples and Applications
- 4.4.3 Advantages of GaAs versus Silicon
- 4.4.4 Semiconductor Technology
- 4.4.5 MMIC Fabrication Process
- 4.4.1 Introduction
- 3.5.3 Pyramidal Horn Antenna
- 4.3.5 Transmitting Channel Fabrication
- 4.3.6 RF Controller
- 5.4.1 Small Loop Antenna
- 5.4.2 Printed Loop Antenna
- 5.4.3 RFID Loop Antennas
- 5.4.4 New Loop Antenna with Ground Plane
- 5.1.1 Introduction to Microstrip Antennas
- 5.1.2 Transmission Line Model of Microstrip Antennas
- 5.1.3 Higher-Order Transmission Modes in Microstrip Antennas
- 5.1.5 Losses in Microstrip Antennas
- 5.7.1 Grounded Quarter Wavelength Patch Antenna
- 5.7.2 A New Double Layers PIFA Antenna
- 6.2.1 18-40 GHz Front-End Requirements
- 6.5.1 Comparison of FSU Implementation by Discrete Components or as Super Component
- 6.5.2 FSU Analysis
- 6.5.3 FSU Thermal Analysis
- 6.5.4 FSU Interfaces and Layout
- 6.4.2 Electrical Interfaces and Connectors
- 6.4.3 Environmental Conditions
- 6.4.4 Input DC Voltages and Currents
- 6.4.8 FSU Physical Characteristics
- 6.4.9 Logic Requirements
- 6.3.1 Introduction.
- 6.3.3 Switch Filter Bank Specifications
- 6.3.4 Filter Design
- 5.3.1 Rat-Race Coupler
- 6.2.2 Front-End Design
- 6.2.3 High Gain Front-End Module
- 6.2.4 High Gain Front-End Design
- 7.7.5 Development of the Receiving Channel
- 7.7.7 Conclusions
- 7.7.1 Introduction
- 7.7.2 Receiving Channel Design
- 6.4.1 FSU Requirements
- 7.5.1 Specifications
- 7.5.3 SSPA Electrical Design
- 7.5.4 Advanced Packaging Techniques for High-Power 30GHz Transmit Channels
- 8.1.3 Monopulse Processor
- 8.1.4 High Power Amplifier
- 7.8.1 Introduction
- 7.8.3 Description of the 0.5 and 1.5W Power Amplifiers
- 7.8.5 Description of the 3.2W Power Amplifier
- 7.8.6 Measured Test Results
- 8.1.1 Automatic Tracking System Link Budget Calculations
- 8.1.2 Ku-Band Tracking System Antennas
- 8.2.1 RF Head Description
- 8.2.2 RF Head Specifications
- 8.2.3 RF Head Design
- 8.2.4 RF Head Measurements
- 8.1.6 Tracking System Interface
- 8.1.5 Tracking System Downconverter/Upconverter
- 9.3.1 Wilkinson Power Divider
- 9.3.3 Gysel Power Divider
- 9.3.5 Wideband Three-Way Unequal Power Divider
- 9.3.6 Wideband Six-Way Unequal Power Divider
- 9.3.7 Wideband Five-Way Unequal Power Divider
- 9.2.1 Resistors
- 9.2.2 Capacitor
- 9.2.4 Couplers
- 9.2.5 A Wideband Millimeter-Wave Coupler
- 8.2.5 X-Band RF Head Test Results
- 9.6.3 Receiving Channel Design
- 9.6.1 Introduction
- 9.6.2 Wideband Receiving Direction Finding System
- 9.5.1 Third-Order Model for a Single Tone
- 9.5.2 Third-Order Model for Two Tones
- 9.5.3 Third-Order Intercept Point
- 9.4.1 Amplifiers Stability
- 9.4.3 Class A Amplifiers
- 9.4.4 Class B Amplifier
- 9.4.5 Class C Amplifier
- 9.4.6 Class D Amplifier
- 10.3.1 Detection Array Concept
- 10.3.3 W-Band Antenna Design
- 10.3.4 Resistor Design
- 9.6.4 Measured Results of the Receiving Channel
- 10.2.3 MEMS Components.