Geometry of Riemann surfaces proceedings of the Anogia conference to celebrate the 65th birthday of William J. Harvey
Riemann surfaces is a thriving area of mathematics with applications to hyperbolic geometry, complex analysis, conformal dynamics, discrete groups, & algebraic curves. This collection of articles presents original research & expert surveys of related topics, making the field accessible to re...
Otros Autores: | , , , |
---|---|
Formato: | Libro electrónico |
Idioma: | Inglés |
Publicado: |
Cambridge, UK ; New York :
Cambridge University Press
[2010]
|
Colección: | EBSCO Academic eBook Collection Complete.
London Mathematical Society lecture note series ; 368. |
Acceso en línea: | Conectar con la versión electrónica |
Ver en Universidad de Navarra: | https://innopac.unav.es/record=b38446789*spi |
Tabla de Contenidos:
- Semisimple actions of mapping class groups on CAT(0) spaces M. R. Bridson
- A survey of research inspired by Harvey's theorem on cyclic groups of automorphisms E. Bujalance, F. J. Cirre and G. Gromadzki
- Algorithms for simple closed geodesics P. Buser
- Matings in holomorphic dynamics S. Bullett
- Equisymmetric strata of the singular locus of the moduli space of Riemann surfaces of genus 4 A. F. Costa and M. Izquierdo
- Diffeomorphisms and automorphisms of compact hyperbolic 2-orbifolds C. J. Earle
- Holomorphic motions and related topics F. P. Gardiner, Y. Jiang and Z. Wang
- Cutting sequences and palindromes J. Gilman and L. Keen
- On a Schottky problem for the singular locus of A5 V. Gonzalez-Aguilera
- Non-special divisors supported on the branch set of a p-gonal Riemann surface G. Gonzalez-Diez
- A note on the lifting of automorphisms R. Hidalgo and B. Maskit
- Simple closed geodesics of equal length on a torus G. McShane and H. Parlier
- On extensions of holomorphic motions
- a survey S. Mitra; Complex hyperbolic quasi-Fuchsian groups J. R. Parker and I. D. Platis
- Geometry of optimal trajectories M. Pontani and P. Teofilatto
- Actions of fractional Dehn twists on moduli spaces R. Silhol.