Elliptic cohomology geometry, applications, and higher chromatic analogues

First collection of papers on elliptic cohomology in twenty years; represents the diversity of topics within this important field.

Detalles Bibliográficos
Autor Corporativo: London Mathematical Society (-)
Otros Autores: Miller, Haynes R., 1948- (-), Ravenel, Douglas C.
Formato: Libro electrónico
Idioma:Inglés
Publicado: Cambridge, UK ; New York : Cambridge University Press 2007.
Colección:EBSCO Academic eBook Collection Complete.
London Mathematical Society lecture note series ; 342.
Acceso en línea:Conectar con la versión electrónica
Ver en Universidad de Navarra:https://innopac.unav.es/record=b3844527x*spi
Tabla de Contenidos:
  • Cover; Title; Copyright; Contents; Preface; Charles Thomas, 1938-2005; 1. Discrete torsion for the supersingular orbifold sigma genus; 1. Introduction; 2. The sigma orientation and the sigma genus; 3. The sigma genus; 4. The Borel-equivariant sigma genus; 5. Character theory; 6. The orbifold sigma genus; 7. Comparison with the analytic equivariant genus; 8. The cocycle; 9. Discrete torsion; 10. The non-abelian Case; References; 2. Quaternionic elliptic objects and K3-cohomology; 1. Introduction; 2. The sigma orientation and the sigma genus; 3. The sigma genus.
  • 4. The Borel-equivariant sigma genus5. Character theory; 6. The orbifold sigma genus; 7. Comparison with the analytic equivariant genus; 8. The cocycle; 9. Discrete torsion; 10. The non-abelian Case; References; 3. The M-theory 3-form and E8 gauge theory; 1. Introduction; 2. The gauge equivalence class of a C-field; 3. Models for the C-field; 4. The definition of the C-field measure for Y without boundary; 5. The C-field measure when Y has a boundary; 6. The action of the gauge group on the physical wavefunction and the Gauss law; 7. The definition of C-field electric charge.
  • 8. Mathematical Properties of <U+004b>X(Č)9. <U+005a> as a cubic refinement, with applications to integration over flat C-fields; 10. Application 1: The 5-brane partition function; 11. Application 2: Relation of M-theory to K-theory; 12. Application 3: Comments on spatial boundaries; 13. Conclusions and future directions; References; 4. Algebraic groups and equivariant cohomology theories; Contents; 1. Introduction.; 2. K-theory and the multiplicative group.; 3. The shape of a cohomology theory.; 4. The non-split torus.; 5. Elliptic cohomology and elliptic curves.; 6. T-equivariant elliptic cohomology.
  • 7. Shapes from projective varieties.8. Rational equivariant cohomology theories.; 9. The model for the circle group G = T.; 10. Reflecting the group structure of the elliptic curve.; References; 5. Delocalised equivariant elliptic cohomology (with an introduction by Matthew Ando and Haynes Miller); References; 6. On finite resolutions of K(n)-local spheres; 0. Introduction; 1. Background; 1.1 Localization with respect to Morava K-theory.; 1.2 The stabilizer groups.; 1.3 Homotopy xed point spectra.; 2. The case n= 0 mod p-1; 2.1 Explicit examples I; 2.2 The general case.