Numerical methods of statistics

This book explains how computer software is designed to perform the tasks required for sophisticated statistical analysis. For statisticians, it examines the nitty-gritty computational problems behind statistical methods. For mathematicians and computer scientists, it looks at the application of mat...

Descripción completa

Detalles Bibliográficos
Autor principal: Monahan, John F. (-)
Formato: Libro electrónico
Idioma:Inglés
Publicado: Cambridge ; New York : Cambridge University Press 2011.
Edición:2nd ed
Colección:EBSCO Academic eBook Collection Complete.
Cambridge series in statistical and probabilistic mathematics ; [32]
Acceso en línea:Conectar con la versión electrónica
Ver en Universidad de Navarra:https://innopac.unav.es/record=b38422700*spi
Tabla de Contenidos:
  • 1. Algorithms and Computers
  • 1.1. Introduction
  • 1.2. Computers
  • 1.3. Software and Computer Languages
  • 1.4. Data Structures
  • 1.5. Programming Practice
  • 1.6. Some Comments on R
  • References
  • 2. Computer Arithmetic
  • 2.1. Introduction
  • 2.2. Positional Number Systems
  • 2.3. Fixed Point Arithmetic
  • 2.4. Floating Point Representations
  • 2.5. Living with Floating Point Inaccuracies
  • 2.6. The Pale and Beyond
  • 2.7. Conditioned Problems and Stable Algorithms
  • Programs and Demonstrations
  • Exercises
  • References
  • 3. Matrices and Linear Equations
  • 3.1. Introduction
  • 3.2. Matrix Operations
  • 3.3. Solving Triangular Systems
  • 3.4. Gaussian Elimination
  • 3.5. Cholesky Decomposition
  • 3.6. Matrix Norms
  • 3.7. Accuracy and Conditioning
  • 3.8. Matrix Computations in R
  • Programs and Demonstrations
  • Exercises
  • References.
  • 4. More Methods for Solving Linear Equations
  • 4.1. Introduction
  • 4.2. Full Elimination with Complete Pivoting
  • 4.3. Banded Matrices
  • 4.4. Applications to ARMA Time-Series Models
  • 4.5. Toeplitz Systems
  • 4.6. Sparse Matrices
  • 4.7. Iterative Methods
  • 4.8. Linear Programming
  • Programs and Demonstrations
  • Exercises
  • References
  • 5. Regression Computations
  • 5.1. Introduction
  • 5.2. Condition of the Regression Problem
  • 5.3. Solving the Normal Equations
  • 5.4. Gram-Schmidt Orthogonalization
  • 5.5. Householder Transformations
  • 5.6. Householder Transformations for Least Squares
  • 5.7. Givens Transformations
  • 5.8. Givens Transformations for Least Squares
  • 5.9. Regression Diagnostics
  • 5.10. Hypothesis Tests
  • 5.11. Conjugate Gradient Methods
  • 5.12. Doolittle, the Sweep, and All Possible Regressions
  • 5.13. Alternatives to Least Squares
  • 5.14. Comments
  • Programs and Demonstrations
  • Exercises
  • References.
  • 6. Eigenproblems
  • 6.1. Introduction
  • 6.2. Theory
  • 6.3. Power Methods
  • 6.4. The Symmetric Eigenproblem and Tridiagonalization
  • 6.5. The QR Algorithm
  • 6.6. Singular Value Decomposition
  • 6.7. Applications
  • 6.8. Complex Singular Value Decomposition
  • Programs and Demonstrations
  • Exercises
  • References
  • 7. Functions: Interpolation, Smoothing, and Approximation
  • 7.1. Introduction
  • 7.2. Interpolation
  • 7.3. Interpolating Splines
  • 7.4. Curve Fitting with Splines: Smoothing and Regression
  • 7.5. Mathematical Approximation
  • 7.6. Practical Approximation Techniques
  • 7.7. Computing Probability Functions
  • Programs and Demonstrations
  • Exercises
  • References
  • 8. Introduction to Optimization and Nonlinear Equations
  • 8.1. Introduction
  • 8.2. Safe Univariate Methods: Lattice Search, Golden Section, and Bisection
  • 8.3. Root Finding
  • 8.4. First Digression: Stopping and Condition.
  • 8.5. Multivariate Newton's Methods
  • 8.6. Second Digression: Numerical Differentiation
  • 8.7. Minimization and Nonlinear Equations
  • 8.8. Condition and Scaling
  • 8.9. Implementation
  • 8.10. A Non-Newton Method: Nelder-Mead
  • Programs and Demonstrations
  • Exercises
  • References
  • 9. Maximum Likelihood and Nonlinear Regression
  • 9.1. Introduction
  • 9.2. Notation and Asymptotic Theory of Maximum Likelihood
  • 9.3. Information, Scoring, and Variance Estimates
  • 9.4. An Extended Example
  • 9.5. Concentration, Iteration, and the EM Algorithm
  • 9.6. Multiple Regression in the Context of Maximum Likelihood
  • 9.7. Generalized Linear Models
  • 9.8. Nonlinear Regression
  • 9.9. Parameterizations and Constraints
  • Programs and Demonstrations
  • Exercises
  • References
  • 10. Numerical Integration and Monte Carlo Methods
  • 10.1. Introduction
  • 10.2. Motivating Problems
  • 10.3. One-Dimensional Quadrature.
  • 10.4. Numerical Integration in Two or More Variables
  • 10.5. Uniform Pseudorandom Variables
  • 10.6. Quasi-Monte Carlo Integration
  • 10.7. Strategy and Tactics
  • Programs and Demonstrations
  • Exercises
  • References
  • 11. Generating Random Variables from Other Distributions
  • 11.1. Introduction
  • 11.2. General Methods for Continuous Distributions
  • 11.3. Algorithms for Continuous Distributions
  • 11.4. General Methods for Discrete Distributions
  • 11.5. Algorithms for Discrete Distributions
  • 11.6. Other Randomizations
  • 11.7. Accuracy in Random Number Generation
  • Programs and Demonstrations
  • Exercises
  • References
  • 12. Statistical Methods for Integration and Monte Carlo
  • 12.1. Introduction
  • 12.2. Distribution and Density Estimation
  • 12.3. Distributional Tests
  • 12.4. Importance Sampling and Weighted Observations
  • 12.5. Testing Importance Sampling Weights
  • 12.6. Laplace Approximations.
  • 12.7. Randomized Quadrature
  • 12.8. Spherical-Radial Methods
  • Programs and Demonstrations
  • Exercises
  • References
  • 13. Markov Chain Monte Carlo Methods
  • 13.1. Introduction
  • 13.2. Markov Chains
  • 13.3. Gibbs Sampling
  • 13.4. Metropolis-Hastings Algorithm
  • 13.5. Time-Series Analysis
  • 13.6. Adaptive Acceptance/Rejection
  • 13.7. Diagnostics
  • Programs and Demonstrations
  • Exercises
  • References
  • 14. Sorting and Fast Algorithms
  • 14.1. Introduction
  • 14.2. Divide and Conquer
  • 14.3. Sorting Algorithms
  • 14.4. Fast Order Statistics and Related Problems
  • 14.5. Fast Fourier Transform
  • 14.6. Convolutions and the Chirp-z Transform
  • 14.7. Statistical Applications of the FFT
  • 14.8. Combinatorial Problems
  • Programs and Demonstrations
  • Exercises
  • References.