Numerical methods of statistics
This book explains how computer software is designed to perform the tasks required for sophisticated statistical analysis. For statisticians, it examines the nitty-gritty computational problems behind statistical methods. For mathematicians and computer scientists, it looks at the application of mat...
Autor principal: | |
---|---|
Formato: | Libro electrónico |
Idioma: | Inglés |
Publicado: |
Cambridge ; New York :
Cambridge University Press
2011.
|
Edición: | 2nd ed |
Colección: | EBSCO Academic eBook Collection Complete.
Cambridge series in statistical and probabilistic mathematics ; [32] |
Acceso en línea: | Conectar con la versión electrónica |
Ver en Universidad de Navarra: | https://innopac.unav.es/record=b38422700*spi |
Tabla de Contenidos:
- 1. Algorithms and Computers
- 1.1. Introduction
- 1.2. Computers
- 1.3. Software and Computer Languages
- 1.4. Data Structures
- 1.5. Programming Practice
- 1.6. Some Comments on R
- References
- 2. Computer Arithmetic
- 2.1. Introduction
- 2.2. Positional Number Systems
- 2.3. Fixed Point Arithmetic
- 2.4. Floating Point Representations
- 2.5. Living with Floating Point Inaccuracies
- 2.6. The Pale and Beyond
- 2.7. Conditioned Problems and Stable Algorithms
- Programs and Demonstrations
- Exercises
- References
- 3. Matrices and Linear Equations
- 3.1. Introduction
- 3.2. Matrix Operations
- 3.3. Solving Triangular Systems
- 3.4. Gaussian Elimination
- 3.5. Cholesky Decomposition
- 3.6. Matrix Norms
- 3.7. Accuracy and Conditioning
- 3.8. Matrix Computations in R
- Programs and Demonstrations
- Exercises
- References.
- 4. More Methods for Solving Linear Equations
- 4.1. Introduction
- 4.2. Full Elimination with Complete Pivoting
- 4.3. Banded Matrices
- 4.4. Applications to ARMA Time-Series Models
- 4.5. Toeplitz Systems
- 4.6. Sparse Matrices
- 4.7. Iterative Methods
- 4.8. Linear Programming
- Programs and Demonstrations
- Exercises
- References
- 5. Regression Computations
- 5.1. Introduction
- 5.2. Condition of the Regression Problem
- 5.3. Solving the Normal Equations
- 5.4. Gram-Schmidt Orthogonalization
- 5.5. Householder Transformations
- 5.6. Householder Transformations for Least Squares
- 5.7. Givens Transformations
- 5.8. Givens Transformations for Least Squares
- 5.9. Regression Diagnostics
- 5.10. Hypothesis Tests
- 5.11. Conjugate Gradient Methods
- 5.12. Doolittle, the Sweep, and All Possible Regressions
- 5.13. Alternatives to Least Squares
- 5.14. Comments
- Programs and Demonstrations
- Exercises
- References.
- 6. Eigenproblems
- 6.1. Introduction
- 6.2. Theory
- 6.3. Power Methods
- 6.4. The Symmetric Eigenproblem and Tridiagonalization
- 6.5. The QR Algorithm
- 6.6. Singular Value Decomposition
- 6.7. Applications
- 6.8. Complex Singular Value Decomposition
- Programs and Demonstrations
- Exercises
- References
- 7. Functions: Interpolation, Smoothing, and Approximation
- 7.1. Introduction
- 7.2. Interpolation
- 7.3. Interpolating Splines
- 7.4. Curve Fitting with Splines: Smoothing and Regression
- 7.5. Mathematical Approximation
- 7.6. Practical Approximation Techniques
- 7.7. Computing Probability Functions
- Programs and Demonstrations
- Exercises
- References
- 8. Introduction to Optimization and Nonlinear Equations
- 8.1. Introduction
- 8.2. Safe Univariate Methods: Lattice Search, Golden Section, and Bisection
- 8.3. Root Finding
- 8.4. First Digression: Stopping and Condition.
- 8.5. Multivariate Newton's Methods
- 8.6. Second Digression: Numerical Differentiation
- 8.7. Minimization and Nonlinear Equations
- 8.8. Condition and Scaling
- 8.9. Implementation
- 8.10. A Non-Newton Method: Nelder-Mead
- Programs and Demonstrations
- Exercises
- References
- 9. Maximum Likelihood and Nonlinear Regression
- 9.1. Introduction
- 9.2. Notation and Asymptotic Theory of Maximum Likelihood
- 9.3. Information, Scoring, and Variance Estimates
- 9.4. An Extended Example
- 9.5. Concentration, Iteration, and the EM Algorithm
- 9.6. Multiple Regression in the Context of Maximum Likelihood
- 9.7. Generalized Linear Models
- 9.8. Nonlinear Regression
- 9.9. Parameterizations and Constraints
- Programs and Demonstrations
- Exercises
- References
- 10. Numerical Integration and Monte Carlo Methods
- 10.1. Introduction
- 10.2. Motivating Problems
- 10.3. One-Dimensional Quadrature.
- 10.4. Numerical Integration in Two or More Variables
- 10.5. Uniform Pseudorandom Variables
- 10.6. Quasi-Monte Carlo Integration
- 10.7. Strategy and Tactics
- Programs and Demonstrations
- Exercises
- References
- 11. Generating Random Variables from Other Distributions
- 11.1. Introduction
- 11.2. General Methods for Continuous Distributions
- 11.3. Algorithms for Continuous Distributions
- 11.4. General Methods for Discrete Distributions
- 11.5. Algorithms for Discrete Distributions
- 11.6. Other Randomizations
- 11.7. Accuracy in Random Number Generation
- Programs and Demonstrations
- Exercises
- References
- 12. Statistical Methods for Integration and Monte Carlo
- 12.1. Introduction
- 12.2. Distribution and Density Estimation
- 12.3. Distributional Tests
- 12.4. Importance Sampling and Weighted Observations
- 12.5. Testing Importance Sampling Weights
- 12.6. Laplace Approximations.
- 12.7. Randomized Quadrature
- 12.8. Spherical-Radial Methods
- Programs and Demonstrations
- Exercises
- References
- 13. Markov Chain Monte Carlo Methods
- 13.1. Introduction
- 13.2. Markov Chains
- 13.3. Gibbs Sampling
- 13.4. Metropolis-Hastings Algorithm
- 13.5. Time-Series Analysis
- 13.6. Adaptive Acceptance/Rejection
- 13.7. Diagnostics
- Programs and Demonstrations
- Exercises
- References
- 14. Sorting and Fast Algorithms
- 14.1. Introduction
- 14.2. Divide and Conquer
- 14.3. Sorting Algorithms
- 14.4. Fast Order Statistics and Related Problems
- 14.5. Fast Fourier Transform
- 14.6. Convolutions and the Chirp-z Transform
- 14.7. Statistical Applications of the FFT
- 14.8. Combinatorial Problems
- Programs and Demonstrations
- Exercises
- References.