Rigid cohomology
Dating back to work of Berthelot, rigid cohomology appeared as a common generalization of Monsky-Washnitzer cohomology and crystalline cohomology. It is a p-adic Weil cohomology suitable for computing Zeta and L-functions for algebraic varieties on finite fields. Moreover, it is effective, in the se...
Autor principal: | |
---|---|
Formato: | Libro electrónico |
Idioma: | Inglés |
Publicado: |
Cambridge :
Cambridge University Press
2007.
|
Colección: | EBSCO Academic eBook Collection Complete.
Cambridge tracts in mathematics ; 172. |
Acceso en línea: | Conectar con la versión electrónica |
Ver en Universidad de Navarra: | https://innopac.unav.es/record=b38415161*spi |
Sumario: | Dating back to work of Berthelot, rigid cohomology appeared as a common generalization of Monsky-Washnitzer cohomology and crystalline cohomology. It is a p-adic Weil cohomology suitable for computing Zeta and L-functions for algebraic varieties on finite fields. Moreover, it is effective, in the sense that it gives algorithms to compute the number of rational points of such varieties. This is the first book to give a complete treatment of the theory, from full discussion of all the basics to descriptions of the very latest developments. Results and proofs are included that are not available elsewhere, local computations are explained, and many worked examples are given. This accessible tract will be of interest to researchers working in arithmetic geometry, p-adic cohomology theory, and related cryptographic areas. |
---|---|
Descripción Física: | xv, 319 p. |
Formato: | Forma de acceso: World Wide Web. |
Bibliografía: | Incluye referencias bibliográficas e índice. |
ISBN: | 9780511342554 9780511340918 9780521875240 |