Rigid cohomology

Dating back to work of Berthelot, rigid cohomology appeared as a common generalization of Monsky-Washnitzer cohomology and crystalline cohomology. It is a p-adic Weil cohomology suitable for computing Zeta and L-functions for algebraic varieties on finite fields. Moreover, it is effective, in the se...

Descripción completa

Detalles Bibliográficos
Autor principal: Le Stum, Bernard (-)
Formato: Libro electrónico
Idioma:Inglés
Publicado: Cambridge : Cambridge University Press 2007.
Colección:EBSCO Academic eBook Collection Complete.
Cambridge tracts in mathematics ; 172.
Acceso en línea:Conectar con la versión electrónica
Ver en Universidad de Navarra:https://innopac.unav.es/record=b38415161*spi
Descripción
Sumario:Dating back to work of Berthelot, rigid cohomology appeared as a common generalization of Monsky-Washnitzer cohomology and crystalline cohomology. It is a p-adic Weil cohomology suitable for computing Zeta and L-functions for algebraic varieties on finite fields. Moreover, it is effective, in the sense that it gives algorithms to compute the number of rational points of such varieties. This is the first book to give a complete treatment of the theory, from full discussion of all the basics to descriptions of the very latest developments. Results and proofs are included that are not available elsewhere, local computations are explained, and many worked examples are given. This accessible tract will be of interest to researchers working in arithmetic geometry, p-adic cohomology theory, and related cryptographic areas.
Descripción Física:xv, 319 p.
Formato:Forma de acceso: World Wide Web.
Bibliografía:Incluye referencias bibliográficas e índice.
ISBN:9780511342554
9780511340918
9780521875240