Philosophy of quantum information and entanglement

"Recent work in quantum information science has produced a revolution in our understanding of quantum entanglement. Scientists now view entanglement as a physical resource with many important applications. These range from quantum computers, which would be able to compute exponentially faster t...

Descripción completa

Detalles Bibliográficos
Otros Autores: Bokulich, Alisa (-), Jaeger, Gregg
Formato: Libro electrónico
Idioma:Inglés
Publicado: Cambridge ; New York : Cambridge University Press 2010.
Colección:EBSCO Academic eBook Collection Complete.
Acceso en línea:Conectar con la versión electrónica
Ver en Universidad de Navarra:https://innopac.unav.es/record=b38410783*spi
Tabla de Contenidos:
  • Cover
  • Half-title
  • Title
  • Copyright
  • Dedication
  • Contributors
  • Preface
  • Introduction
  • References
  • Part I Quantum entanglement and non-locality
  • 1 Non-locality beyond quantum mechanics
  • 1.1 Introduction
  • 1.2 Non-local correlations beyond quantum mechanics
  • 1.3 Communication complexity
  • 1.4 Non-local computation
  • 1.5 Conclusions
  • References
  • 2 Entanglement and subsystems, entanglement beyond subsystems, and all that
  • 2.1 Introduction
  • 2.2 Entanglement and subsystems: the standard view
  • 2.3 Entanglement beyond subsystems: the concept of generalized entanglement
  • 2.4 Generalized entanglement by example
  • 2.5 Generalized entanglement: applications and implications (so far . . .)
  • 2.6 Conclusion
  • Acknowledgments
  • References
  • 3 Formalism locality in quantum theory and quantum gravity
  • 3.1 Introduction
  • 3.2 Dealing with indefinite causal structure
  • 3.3 How standard formulations of physical theories are not F-local
  • 3.4 An outline of the causaloid framework
  • 3.5 Formulating quantum theory in the causaloid framework
  • 3.6 The road to quantum gravity
  • 3.7 Conclusions
  • References
  • Part II Quantum probability
  • 4 Bell's inequality from the contextual probabilistic viewpoint
  • 4.1 Introduction
  • 4.2 Measure-theoretical derivation of Bell-type inequalities
  • 4.3 Formalization of rules for correspondence between classical and quantum statistical models
  • 4.4 Von Neumann postulates on classicalquantum correspondence and the no-go theorem
  • 4.5 Bell-type no-go theorems
  • 4.6 The range-of-values postulate
  • 4.7 Contextuality
  • 4.8 Bell-contexuality and action at a distance
  • Acknowledgments
  • References
  • 5 Probabilistic theories: What is special about Quantum Mechanics?
  • 5.1 Introduction
  • 5.2 C-Algebra representation of probabilistic theories
  • 5.3 Independent systems
  • 5.4 Axiomatic interlude: exploring Postulates FAITHE and PURIFY
  • 5.5 What is special about quantum mechanics as a probabilistic theory?
  • 5.6 Conclusions
  • Acknowledgments
  • References
  • 6 What probabilities tell about quantum systems, with application to entropy and entanglement
  • 6.1 Introduction
  • 6.2 Parameter spaces and quantum models
  • 6.3 Many quantum models of any PPM
  • 6.4 Parameter spaces and PPMs associated with entangled states
  • Acknowledgments
  • References
  • 7 Bayesian updating and information gain in quantum measurements
  • 7.1 Introduction
  • 7.2 Bayesian conditionalization
  • 7.3 Quantum measurement
  • 7.4 Quantum measurement as Bayesian updating
  • 7.5 Quantum measurement and information gain
  • 7.6 Conclusion
  • References
  • Part III Quantum information
  • 8 Schumacher information and the philosophy of physics
  • 8.1 Introduction
  • 8.2 The CBH theorem
  • 8.3 Quantum information
  • 8.4 Re-conceiving quantum mechanics
  • 8.5 Conclusion
  • References
  • 9 From physics to information theory and back
  • 9.1 Introduction
  • 9.2 Algebraic frameworks
  • 9.3 The operational approach
  • 9.4 The convex-set approach
  • 9.5 The Spekkens toy theory
  • 9.6 Appendix
  • Acknowledgments
  • References
  • 10 Information, immaterialism, instrumentalism: Old and new in quantum information
  • 10.1 Two thoughts
  • 10.2 The quantum state as information
  • T